Abstract:We study committee elections from a perspective of finding the most conflicting candidates, that is, candidates that imply the largest amount of conflict, as per voter preferences. By proposing basic axioms to capture this objective, we show that none of the prominent multiwinner voting rules meet them. Consequently, we design committee voting rules compliant with our desiderata, introducing conflictual voting rules. A subsequent deepened analysis sheds more light on how they operate. Our investigation identifies various aspects of conflict, for which we come up with relevant axioms and quantitative measures, which may be of independent interest. We support our theoretical study with experiments on both real-life and synthetic data.
Abstract:Focusing on Stable Roommates (SR) instances, we contribute to the toolbox for conducting experiments for stable matching problems. We introduce a polynomial-time computable pseudometric to measure the similarity of SR instances, analyze its properties, and use it to create a map of SR instances. This map visualizes 460 synthetic SR instances (each sampled from one of ten different statistical cultures) as follows: Each instance is a point in the plane, and two points are close on the map if the corresponding SR instances are similar to each other. Subsequently, we conduct several exemplary experiments and depict their results on the map, illustrating the map's usefulness as a non-aggregate visualization tool, the diversity of our generated dataset, and the need to use instances sampled from different statistical cultures. Lastly, to demonstrate that our framework can also be used for other matching problems under preference, we create and analyze a map of Stable Marriage instances.
Abstract:We use the "map of elections" approach of Szufa et al. (AAMAS 2020) to analyze several well-known vote distributions. For each of them, we give an explicit formula or an efficient algorithm for computing its frequency matrix, which captures the probability that a given candidate appears in a given position in a sampled vote. We use these matrices to draw the "skeleton map" of distributions, evaluate its robustness, and analyze its properties. We further use them to identify the nature of several real-world elections.