Abstract:We examine an approval-based model of Liquid Democracy with a budget constraint on voting and delegating costs, aiming to centrally select casting voters ensuring complete representation of the electorate. From a computational complexity perspective, we focus on minimizing overall costs, maintaining short delegation paths, and preventing excessive concentration of voting power. Furthermore, we explore computational aspects of strategic control, specifically, whether external agents can change election components to influence the voting power of certain voters.
Abstract:We study committee elections from a perspective of finding the most conflicting candidates, that is, candidates that imply the largest amount of conflict, as per voter preferences. By proposing basic axioms to capture this objective, we show that none of the prominent multiwinner voting rules meet them. Consequently, we design committee voting rules compliant with our desiderata, introducing conflictual voting rules. A subsequent deepened analysis sheds more light on how they operate. Our investigation identifies various aspects of conflict, for which we come up with relevant axioms and quantitative measures, which may be of independent interest. We support our theoretical study with experiments on both real-life and synthetic data.