Abstract:We present GEM, a Generalizable Ego-vision Multimodal world model that predicts future frames using a reference frame, sparse features, human poses, and ego-trajectories. Hence, our model has precise control over object dynamics, ego-agent motion and human poses. GEM generates paired RGB and depth outputs for richer spatial understanding. We introduce autoregressive noise schedules to enable stable long-horizon generations. Our dataset is comprised of 4000+ hours of multimodal data across domains like autonomous driving, egocentric human activities, and drone flights. Pseudo-labels are used to get depth maps, ego-trajectories, and human poses. We use a comprehensive evaluation framework, including a new Control of Object Manipulation (COM) metric, to assess controllability. Experiments show GEM excels at generating diverse, controllable scenarios and temporal consistency over long generations. Code, models, and datasets are fully open-sourced.
Abstract:Recently, various methods have been proposed to solve Image Restoration (IR) tasks using a pre-trained diffusion model leading to state-of-the-art performance. However, most of these methods assume that the degradation operator in the IR task is completely known. Furthermore, a common characteristic among these approaches is that they alter the diffusion sampling process in order to satisfy the consistency with the degraded input image. This choice has recently been shown to be sub-optimal and to cause the restored image to deviate from the data manifold. To address these issues, we propose Blind Image Restoration via fast Diffusion inversion (BIRD) a blind IR method that jointly optimizes for the degradation model parameters and the restored image. To ensure that the restored images lie onto the data manifold, we propose a novel sampling technique on a pre-trained diffusion model. A key idea in our method is not to modify the reverse sampling, i.e., not to alter all the intermediate latents, once an initial noise is sampled. This is ultimately equivalent to casting the IR task as an optimization problem in the space of the input noise. Moreover, to mitigate the computational cost associated with inverting a fully unrolled diffusion model, we leverage the inherent capability of these models to skip ahead in the forward diffusion process using large time steps. We experimentally validate BIRD on several image restoration tasks and show that it achieves state of the art performance on all of them. Our code is available at https://github.com/hamadichihaoui/BIRD.
Abstract:In this paper, we propose an effective two-stage approach named Grounded-Dreamer to generate 3D assets that can accurately follow complex, compositional text prompts while achieving high fidelity by using a pre-trained multi-view diffusion model. Multi-view diffusion models, such as MVDream, have shown to generate high-fidelity 3D assets using score distillation sampling (SDS). However, applied naively, these methods often fail to comprehend compositional text prompts, and may often entirely omit certain subjects or parts. To address this issue, we first advocate leveraging text-guided 4-view images as the bottleneck in the text-to-3D pipeline. We then introduce an attention refocusing mechanism to encourage text-aligned 4-view image generation, without the necessity to re-train the multi-view diffusion model or craft a high-quality compositional 3D dataset. We further propose a hybrid optimization strategy to encourage synergy between the SDS loss and the sparse RGB reference images. Our method consistently outperforms previous state-of-the-art (SOTA) methods in generating compositional 3D assets, excelling in both quality and accuracy, and enabling diverse 3D from the same text prompt.
Abstract:We introduce a novel approach to single image denoising based on the Blind Spot Denoising principle, which we call MAsked and SHuffled Blind Spot Denoising (MASH). We focus on the case of correlated noise, which often plagues real images. MASH is the result of a careful analysis to determine the relationships between the level of blindness (masking) of the input and the (unknown) noise correlation. Moreover, we introduce a shuffling technique to weaken the local correlation of noise, which in turn yields an additional denoising performance improvement. We evaluate MASH via extensive experiments on real-world noisy image datasets. We demonstrate on par or better results compared to existing self-supervised denoising methods.
Abstract:We present two practical improvement techniques for unsupervised segmentation learning. These techniques address limitations in the resolution and accuracy of predicted segmentation maps of recent state-of-the-art methods. Firstly, we leverage image post-processing techniques such as guided filtering to refine the output masks, improving accuracy while avoiding substantial computational costs. Secondly, we introduce a multi-scale consistency criterion, based on a teacher-student training scheme. This criterion matches segmentation masks predicted from regions of the input image extracted at different resolutions to each other. Experimental results on several benchmarks used in unsupervised segmentation learning demonstrate the effectiveness of our proposed techniques.
Abstract:In this work we propose a novel method for unsupervised controllable video generation. Once trained on a dataset of unannotated videos, at inference our model is capable of both composing scenes of predefined object parts and animating them in a plausible and controlled way. This is achieved by conditioning video generation on a randomly selected subset of local pre-trained self-supervised features during training. We call our model CAGE for visual Composition and Animation for video GEneration. We conduct a series of experiments to demonstrate capabilities of CAGE in various settings. Project website: https://araachie.github.io/cage.
Abstract:The development of generative models that create 3D content from a text prompt has made considerable strides thanks to the use of the score distillation sampling (SDS) method on pre-trained diffusion models for image generation. However, the SDS method is also the source of several artifacts, such as the Janus problem, the misalignment between the text prompt and the generated 3D model, and 3D model inaccuracies. While existing methods heavily rely on the qualitative assessment of these artifacts through visual inspection of a limited set of samples, in this work we propose more objective quantitative evaluation metrics, which we cross-validate via human ratings, and show analysis of the failure cases of the SDS technique. We demonstrate the effectiveness of this analysis by designing a novel computationally efficient baseline model that achieves state-of-the-art performance on the proposed metrics while addressing all the above-mentioned artifacts.
Abstract:The growing interest in novel view synthesis, driven by Neural Radiance Field (NeRF) models, is hindered by scalability issues due to their reliance on precisely annotated multi-view images. Recent models address this by fine-tuning large text2image diffusion models on synthetic multi-view data. Despite robust zero-shot generalization, they may need post-processing and can face quality issues due to the synthetic-real domain gap. This paper introduces a novel pipeline for unsupervised training of a pose-conditioned diffusion model on single-category datasets. With the help of pretrained self-supervised Vision Transformers (DINOv2), we identify object poses by clustering the dataset through comparing visibility and locations of specific object parts. The pose-conditioned diffusion model, trained on pose labels, and equipped with cross-frame attention at inference time ensures cross-view consistency, that is further aided by our novel hard-attention guidance. Our model, MIRAGE, surpasses prior work in novel view synthesis on real images. Furthermore, MIRAGE is robust to diverse textures and geometries, as demonstrated with our experiments on synthetic images generated with pretrained Stable Diffusion.
Abstract:In this paper we introduce SemiGPC, a distribution-aware label refinement strategy based on Gaussian Processes where the predictions of the model are derived from the labels posterior distribution. Differently from other buffer-based semi-supervised methods such as CoMatch and SimMatch, our SemiGPC includes a normalization term that addresses imbalances in the global data distribution while maintaining local sensitivity. This explicit control allows SemiGPC to be more robust to confirmation bias especially under class imbalance. We show that SemiGPC improves performance when paired with different Semi-Supervised methods such as FixMatch, ReMixMatch, SimMatch and FreeMatch and different pre-training strategies including MSN and Dino. We also show that SemiGPC achieves state of the art results under different degrees of class imbalance on standard CIFAR10-LT/CIFAR100-LT especially in the low data-regime. Using SemiGPC also results in about 2% avg.accuracy increase compared to a new competitive baseline on the more challenging benchmarks SemiAves, SemiCUB, SemiFungi and Semi-iNat.
Abstract:We propose a new semi-supervised learning design for human pose estimation that revisits the popular dual-student framework and enhances it two ways. First, we introduce a denoising scheme to generate reliable pseudo-heatmaps as targets for learning from unlabeled data. This uses multi-view augmentations and a threshold-and-refine procedure to produce a pool of pseudo-heatmaps. Second, we select the learning targets from these pseudo-heatmaps guided by the estimated cross-student uncertainty. We evaluate our proposed method on multiple evaluation setups on the COCO benchmark. Our results show that our model outperforms previous state-of-the-art semi-supervised pose estimators, especially in extreme low-data regime. For example with only 0.5K labeled images our method is capable of surpassing the best competitor by 7.22 mAP (+25% absolute improvement). We also demonstrate that our model can learn effectively from unlabeled data in the wild to further boost its generalization and performance.