Abstract:We present GEM, a Generalizable Ego-vision Multimodal world model that predicts future frames using a reference frame, sparse features, human poses, and ego-trajectories. Hence, our model has precise control over object dynamics, ego-agent motion and human poses. GEM generates paired RGB and depth outputs for richer spatial understanding. We introduce autoregressive noise schedules to enable stable long-horizon generations. Our dataset is comprised of 4000+ hours of multimodal data across domains like autonomous driving, egocentric human activities, and drone flights. Pseudo-labels are used to get depth maps, ego-trajectories, and human poses. We use a comprehensive evaluation framework, including a new Control of Object Manipulation (COM) metric, to assess controllability. Experiments show GEM excels at generating diverse, controllable scenarios and temporal consistency over long generations. Code, models, and datasets are fully open-sourced.
Abstract:In this work we propose a novel method for unsupervised controllable video generation. Once trained on a dataset of unannotated videos, at inference our model is capable of both composing scenes of predefined object parts and animating them in a plausible and controlled way. This is achieved by conditioning video generation on a randomly selected subset of local pre-trained self-supervised features during training. We call our model CAGE for visual Composition and Animation for video GEneration. We conduct a series of experiments to demonstrate capabilities of CAGE in various settings. Project website: https://araachie.github.io/cage.
Abstract:The growing interest in novel view synthesis, driven by Neural Radiance Field (NeRF) models, is hindered by scalability issues due to their reliance on precisely annotated multi-view images. Recent models address this by fine-tuning large text2image diffusion models on synthetic multi-view data. Despite robust zero-shot generalization, they may need post-processing and can face quality issues due to the synthetic-real domain gap. This paper introduces a novel pipeline for unsupervised training of a pose-conditioned diffusion model on single-category datasets. With the help of pretrained self-supervised Vision Transformers (DINOv2), we identify object poses by clustering the dataset through comparing visibility and locations of specific object parts. The pose-conditioned diffusion model, trained on pose labels, and equipped with cross-frame attention at inference time ensures cross-view consistency, that is further aided by our novel hard-attention guidance. Our model, MIRAGE, surpasses prior work in novel view synthesis on real images. Furthermore, MIRAGE is robust to diverse textures and geometries, as demonstrated with our experiments on synthetic images generated with pretrained Stable Diffusion.
Abstract:We propose a novel unsupervised method to autoregressively generate videos from a single frame and a sparse motion input. Our trained model can generate realistic object-to-object interactions and separate the dynamics and the extents of multiple objects despite only observing them under correlated motion activities. Key components in our method are the randomized conditioning scheme, the encoding of the input motion control, and the randomized and sparse sampling to break correlations. Our model, which we call YODA, has the ability to move objects without physically touching them. We show both qualitatively and quantitatively that YODA accurately follows the user control, while yielding a video quality that is on par with or better than state of the art video generation prior work on several datasets. For videos, visit our project website https://araachie.github.io/yoda.
Abstract:We introduce a novel generative model for video prediction based on latent flow matching, an efficient alternative to diffusion-based models. In contrast to prior work that either incurs a high training cost by modeling the past through a memory state, as in recurrent neural networks, or limits the computational load by conditioning only on a predefined window of past frames, we efficiently and effectively take the past into account by conditioning at inference time only on a small random set of past frames at each integration step of the learned flow. Moreover, to enable the generation of high-resolution videos and speed up the training, we work in the latent space of a pretrained VQGAN. Furthermore, we propose to approximate the initial condition of the flow ODE with the previous noisy frame. This allows to reduce the number of integration steps and hence, speed up the sampling at inference time. We call our model Random frame conditional flow Integration for VidEo pRediction, or, in short, RIVER. We show that RIVER achieves superior or on par performance compared to prior work on common video prediction benchmarks.
Abstract:We present GLASS, a method for Global and Local Action-driven Sequence Synthesis. GLASS is a generative model that is trained on video sequences in an unsupervised manner and that can animate an input image at test time. The method learns to segment frames into foreground-background layers and to generate transitions of the foregrounds over time through a global and local action representation. Global actions are explicitly related to 2D shifts, while local actions are instead related to (both geometric and photometric) local deformations. GLASS uses a recurrent neural network to transition between frames and is trained through a reconstruction loss. We also introduce W-Sprites (Walking Sprites), a novel synthetic dataset with a predefined action space. We evaluate our method on both W-Sprites and real datasets, and find that GLASS is able to generate realistic video sequences from a single input image and to successfully learn a more advanced action space than in prior work.
Abstract:Optimization is often cast as a deterministic problem, where the solution is found through some iterative procedure such as gradient descent. However, when training neural networks the loss function changes over (iteration) time due to the randomized selection of a subset of the samples. This randomization turns the optimization problem into a stochastic one. We propose to consider the loss as a noisy observation with respect to some reference optimum. This interpretation of the loss allows us to adopt Kalman filtering as an optimizer, as its recursive formulation is designed to estimate unknown parameters from noisy measurements. Moreover, we show that the Kalman Filter dynamical model for the evolution of the unknown parameters can be used to capture the gradient dynamics of advanced methods such as Momentum and Adam. We call this stochastic optimization method KaFiStO. KaFiStO is an easy to implement, scalable, and efficient method to train neural networks. We show that it also yields parameter estimates that are on par with or better than existing optimization algorithms across several neural network architectures and machine learning tasks, such as computer vision and language modeling.