Abstract:We present GEM, a Generalizable Ego-vision Multimodal world model that predicts future frames using a reference frame, sparse features, human poses, and ego-trajectories. Hence, our model has precise control over object dynamics, ego-agent motion and human poses. GEM generates paired RGB and depth outputs for richer spatial understanding. We introduce autoregressive noise schedules to enable stable long-horizon generations. Our dataset is comprised of 4000+ hours of multimodal data across domains like autonomous driving, egocentric human activities, and drone flights. Pseudo-labels are used to get depth maps, ego-trajectories, and human poses. We use a comprehensive evaluation framework, including a new Control of Object Manipulation (COM) metric, to assess controllability. Experiments show GEM excels at generating diverse, controllable scenarios and temporal consistency over long generations. Code, models, and datasets are fully open-sourced.
Abstract:In the current state of 6D pose estimation, top-performing techniques depend on complex intermediate correspondences, specialized architectures, and non-end-to-end algorithms. In contrast, our research reframes the problem as a straightforward regression task by exploring the capabilities of Vision Transformers for direct 6D pose estimation through a tailored use of classification tokens. We also introduce a simple method for determining pose confidence, which can be readily integrated into most 6D pose estimation frameworks. This involves modifying the transformer architecture by decreasing the number of query elements based on the network's assessment of the scene complexity. Our method that we call Pose Vision Transformer or PViT-6D provides the benefits of simple implementation and being end-to-end learnable while outperforming current state-of-the-art methods by +0.3% ADD(-S) on Linemod-Occlusion and +2.7% ADD(-S) on the YCB-V dataset. Moreover, our method enhances both the model's interpretability and the reliability of its performance during inference.