Abstract:Understanding the effects of quarantine policies in populations with underlying social networks is crucial for public health, yet most causal inference methods fail here due to their assumption of independent individuals. We introduce DeepNetTMLE, a deep-learning-enhanced Targeted Maximum Likelihood Estimation (TMLE) method designed to estimate time-sensitive treatment effects in observational data. DeepNetTMLE mitigates bias from time-varying confounders under general interference by incorporating a temporal module and domain adversarial training to build intervention-invariant representations. This process removes associations between current treatments and historical variables, while the targeting step maintains the bias-variance trade-off, enhancing the reliability of counterfactual predictions. Using simulations of a ``Susceptible-Infected-Recovered'' model with varied quarantine coverages, we show that DeepNetTMLE achieves lower bias and more precise confidence intervals in counterfactual estimates, enabling optimal quarantine recommendations within budget constraints, surpassing state-of-the-art methods.
Abstract:Fuzzy General Grey Cognitive Map (FGGCM) and Fuzzy Grey Cognitive Map (FGCM) are extensions of Fuzzy Cognitive Map (FCM) in terms of uncertainty. FGGCM allows for the processing of general grey number with multiple intervals, enabling FCM to better address uncertain situations. Although the convergence of FCM and FGCM has been discussed in many literature, the convergence of FGGCM has not been thoroughly explored. This paper aims to fill this research gap. First, metrics for the general grey number space and its vector space is given and proved using the Minkowski inequality. By utilizing the characteristic that Cauchy sequences are convergent sequences, the completeness of these two space is demonstrated. On this premise, utilizing Banach fixed point theorem and Browder-Gohde-Kirk fixed point theorem, combined with Lagrange's mean value theorem and Cauchy's inequality, deduces the sufficient conditions for FGGCM to converge to a unique fixed point when using tanh and sigmoid functions as activation functions. The sufficient conditions for the kernels and greyness of FGGCM to converge to a unique fixed point are also provided separately. Finally, based on Web Experience and Civil engineering FCM, designed corresponding FGGCM with sigmoid and tanh as activation functions by modifying the weights to general grey numbers. By comparing with the convergence theorems of FCM and FGCM, the effectiveness of the theorems proposed in this paper was verified. It was also demonstrated that the convergence theorems of FCM are special cases of the theorems proposed in this paper. The study for convergence of FGGCM is of great significance for guiding the learning algorithm of FGGCM, which is needed for designing FGGCM with specific fixed points, lays a solid theoretical foundation for the application of FGGCM in fields such as control, prediction, and decision support systems.
Abstract:Cognition refers to the function of information perception and processing, which is the fundamental psychological essence of human beings. It is responsible for reasoning and decision-making, while its evaluation is significant for the aviation domain in mitigating potential safety risks. Existing studies tend to use varied methods for cognitive state evaluation yet have limitations in timeliness, generalisation, and interpretability. Accordingly, this study adopts brain functional connectivity with electroencephalography signals to capture associations in brain regions across multiple subjects for evaluating real-time cognitive states. Specifically, a virtual reality-based flight platform is constructed with multi-screen embedded. Three distinctive cognitive tasks are designed and each has three degrees of difficulty. Thirty subjects are acquired for analysis and evaluation. The results are interpreted through different perspectives, including inner-subject and cross-subject for task-wise and gender-wise underlying brain functional connectivity. Additionally, this study incorporates questionnaire-based, task performance-based, and physiological measure-based approaches to fairly label the trials. A multi-class cognitive state evaluation is further conducted with the active brain connections. Benchmarking results demonstrate that the identified brain regions have considerable influences in cognition, with a multi-class accuracy rate of 95.83% surpassing existing studies. The derived findings bring significance to understanding the dynamic relationships among human brain functional regions, cross-subject cognitive behaviours, and decision-making, which have promising practical application values.
Abstract:Accurate segmentation of lung cancer in pathology slides is a critical step in improving patient care. We proposed the ACDC@LungHP (Automatic Cancer Detection and Classification in Whole-slide Lung Histopathology) challenge for evaluating different computer-aided diagnosis (CADs) methods on the automatic diagnosis of lung cancer. The ACDC@LungHP 2019 focused on segmentation (pixel-wise detection) of cancer tissue in whole slide imaging (WSI), using an annotated dataset of 150 training images and 50 test images from 200 patients. This paper reviews this challenge and summarizes the top 10 submitted methods for lung cancer segmentation. All methods were evaluated using the false positive rate, false negative rate, and DICE coefficient (DC). The DC ranged from 0.7354$\pm$0.1149 to 0.8372$\pm$0.0858. The DC of the best method was close to the inter-observer agreement (0.8398$\pm$0.0890). All methods were based on deep learning and categorized into two groups: multi-model method and single model method. In general, multi-model methods were significantly better ($\textit{p}$<$0.01$) than single model methods, with mean DC of 0.7966 and 0.7544, respectively. Deep learning based methods could potentially help pathologists find suspicious regions for further analysis of lung cancer in WSI.
Abstract:Air pollution poses a serious threat to human health as well as economic development around the world. To meet the increasing demand for accurate predictions for air pollutions, we proposed a Deep Inferential Spatial-Temporal Network to deal with the complicated non-linear spatial and temporal correlations. We forecast three air pollutants (i.e., PM2.5, PM10 and O3) of monitoring stations over the next 48 hours, using a hybrid deep learning model consists of inferential predictor (inference for regions without air pollution readings), spatial predictor (capturing spatial correlations using CNN) and temporal predictor (capturing temporal relationship using sequence-to-sequence model with simplified attention mechanism). Our proposed model considers historical air pollution records and historical meteorological data. We evaluate our model on a large-scale dataset containing air pollution records of 35 monitoring stations and grid meteorological data in Beijing, China. Our model outperforms other state-of-art methods in terms of SMAPE and RMSE.