Abstract:Advances in dataset analysis techniques have enabled more sophisticated approaches to analyzing and characterizing training data instances, often categorizing data based on attributes such as ``difficulty''. In this work, we introduce RepMatch, a novel method that characterizes data through the lens of similarity. RepMatch quantifies the similarity between subsets of training instances by comparing the knowledge encoded in models trained on them, overcoming the limitations of existing analysis methods that focus solely on individual instances and are restricted to within-dataset analysis. Our framework allows for a broader evaluation, enabling similarity comparisons across arbitrary subsets of instances, supporting both dataset-to-dataset and instance-to-dataset analyses. We validate the effectiveness of RepMatch across multiple NLP tasks, datasets, and models. Through extensive experimentation, we demonstrate that RepMatch can effectively compare datasets, identify more representative subsets of a dataset (that lead to better performance than randomly selected subsets of equivalent size), and uncover heuristics underlying the construction of some challenge datasets.
Abstract:Large language models (LLMs) often lack culture-specific knowledge of daily life, especially across diverse regions and non-English languages. Existing benchmarks for evaluating LLMs' cultural sensitivities are limited to a single language or collected from online sources such as Wikipedia, which do not reflect the mundane everyday lifestyles of diverse regions. That is, information about the food people eat for their birthday celebrations, spices they typically use, musical instruments youngsters play, or the sports they practice in school is common cultural knowledge but uncommon in easily collected online sources, especially for underrepresented cultures. To address this issue, we introduce BLEnD, a hand-crafted benchmark designed to evaluate LLMs' everyday knowledge across diverse cultures and languages. BLEnD comprises 52.6k question-answer pairs from 16 countries/regions, in 13 different languages, including low-resource ones such as Amharic, Assamese, Azerbaijani, Hausa, and Sundanese. We construct the benchmark to include two formats of questions: short-answer and multiple-choice. We show that LLMs perform better for cultures that are highly represented online, with a maximum 57.34% difference in GPT-4, the best-performing model, in the short-answer format. For cultures represented by mid-to-high-resource languages, LLMs perform better in their local languages, but for cultures represented by low-resource languages, LLMs perform better in English than the local languages. We make our dataset publicly available at: https://github.com/nlee0212/BLEnD.
Abstract:This paper presents a comprehensive analysis of explainable fact-checking through a series of experiments, focusing on the ability of large language models to verify public health claims and provide explanations or justifications for their veracity assessments. We examine the effectiveness of zero/few-shot prompting and parameter-efficient fine-tuning across various open and closed-source models, examining their performance in both isolated and joint tasks of veracity prediction and explanation generation. Importantly, we employ a dual evaluation approach comprising previously established automatic metrics and a novel set of criteria through human evaluation. Our automatic evaluation indicates that, within the zero-shot scenario, GPT-4 emerges as the standout performer, but in few-shot and parameter-efficient fine-tuning contexts, open-source models demonstrate their capacity to not only bridge the performance gap but, in some instances, surpass GPT-4. Human evaluation reveals yet more nuance as well as indicating potential problems with the gold explanations.
Abstract:Numerous debiasing techniques have been proposed to mitigate the gender bias that is prevalent in pretrained language models. These are often evaluated on datasets that check the extent to which the model is gender-neutral in its predictions. Importantly, this evaluation protocol overlooks the possible adverse impact of bias mitigation on useful gender knowledge. To fill this gap, we propose DiFair, a manually curated dataset based on masked language modeling objectives. DiFair allows us to introduce a unified metric, gender invariance score, that not only quantifies a model's biased behavior, but also checks if useful gender knowledge is preserved. We use DiFair as a benchmark for a number of widely-used pretained language models and debiasing techniques. Experimental results corroborate previous findings on the existing gender biases, while also demonstrating that although debiasing techniques ameliorate the issue of gender bias, this improvement usually comes at the price of lowering useful gender knowledge of the model.
Abstract:An emerging solution for explaining Transformer-based models is to use vector-based analysis on how the representations are formed. However, providing a faithful vector-based explanation for a multi-layer model could be challenging in three aspects: (1) Incorporating all components into the analysis, (2) Aggregating the layer dynamics to determine the information flow and mixture throughout the entire model, and (3) Identifying the connection between the vector-based analysis and the model's predictions. In this paper, we present DecompX to tackle these challenges. DecompX is based on the construction of decomposed token representations and their successive propagation throughout the model without mixing them in between layers. Additionally, our proposal provides multiple advantages over existing solutions for its inclusion of all encoder components (especially nonlinear feed-forward networks) and the classification head. The former allows acquiring precise vectors while the latter transforms the decomposition into meaningful prediction-based values, eliminating the need for norm- or summation-based vector aggregation. According to the standard faithfulness evaluations, DecompX consistently outperforms existing gradient-based and vector-based approaches on various datasets. Our code is available at https://github.com/mohsenfayyaz/DecompX.
Abstract:Several proposals have been put forward in recent years for improving out-of-distribution (OOD) performance through mitigating dataset biases. A popular workaround is to train a robust model by re-weighting training examples based on a secondary biased model. Here, the underlying assumption is that the biased model resorts to shortcut features. Hence, those training examples that are correctly predicted by the biased model are flagged as being biased and are down-weighted during the training of the main model. However, assessing the importance of an instance merely based on the predictions of the biased model may be too naive. It is possible that the prediction of the main model can be derived from another decision-making process that is distinct from the behavior of the biased model. To circumvent this, we introduce a fine-tuning strategy that incorporates the similarity between the main and biased model attribution scores in a Product of Experts (PoE) loss function to further improve OOD performance. With experiments conducted on natural language inference and fact verification benchmarks, we show that our method improves OOD results while maintaining in-distribution (ID) performance.
Abstract:Parameter-efficient fine-tuning approaches have recently garnered a lot of attention. Having considerably lower number of trainable weights, these methods can bring about scalability and computational effectiveness. In this paper, we look for optimal sub-networks and investigate the capability of different transformer modules in transferring knowledge from a pre-trained model to a downstream task. Our empirical results suggest that every transformer module in BERT can act as a winning ticket: fine-tuning each specific module while keeping the rest of the network frozen can lead to comparable performance to the full fine-tuning. Among different modules, LayerNorms exhibit the best capacity for knowledge transfer with limited trainable weights, to the extent that, with only 0.003% of all parameters in the layer-wise analysis, they show acceptable performance on various target tasks. On the reasons behind their effectiveness, we argue that their notable performance could be attributed to their high-magnitude weights compared to that of the other modules in the pre-trained BERT.
Abstract:Current pre-trained language models rely on large datasets for achieving state-of-the-art performance. However, past research has shown that not all examples in a dataset are equally important during training. In fact, it is sometimes possible to prune a considerable fraction of the training set while maintaining the test performance. Established on standard vision benchmarks, two gradient-based scoring metrics for finding important examples are GraNd and its estimated version, EL2N. In this work, we employ these two metrics for the first time in NLP. We demonstrate that these metrics need to be computed after at least one epoch of fine-tuning and they are not reliable in early steps. Furthermore, we show that by pruning a small portion of the examples with the highest GraNd/EL2N scores, we can not only preserve the test accuracy, but also surpass it. This paper details adjustments and implementation choices which enable GraNd and EL2N to be applied to NLP.
Abstract:It has been shown that NLI models are usually biased with respect to the word-overlap between premise and hypothesis; they take this feature as a primary cue for predicting the entailment label. In this paper, we focus on an overlooked aspect of the overlap bias in NLI models: the reverse word-overlap bias. Our experimental results demonstrate that current NLI models are highly biased towards the non-entailment label on instances with low overlap, and the existing debiasing methods, which are reportedly successful on existing challenge datasets, are generally ineffective in addressing this category of bias. We investigate the reasons for the emergence of the overlap bias and the role of minority examples in its mitigation. For the former, we find that the word-overlap bias does not stem from pre-training, and for the latter, we observe that in contrast to the accepted assumption, eliminating minority examples does not affect the generalizability of debiasing methods with respect to the overlap bias.
Abstract:There has been a growing interest in interpreting the underlying dynamics of Transformers. While self-attention patterns were initially deemed as the primary option, recent studies have shown that integrating other components can yield more accurate explanations. This paper introduces a novel token attribution analysis method that incorporates all the components in the encoder block and aggregates this throughout layers. Through extensive quantitative and qualitative experiments, we demonstrate that our method can produce faithful and meaningful global token attributions. Our experiments reveal that incorporating almost every encoder component results in increasingly more accurate analysis in both local (single layer) and global (the whole model) settings. Our global attribution analysis significantly outperforms previous methods on various tasks regarding correlation with gradient-based saliency scores. Our code is freely available at https://github.com/mohsenfayyaz/GlobEnc.