Abstract:We study the problem of training neural stochastic differential equations, or diffusion models, to sample from a Boltzmann distribution without access to target samples. Existing methods for training such models enforce time-reversal of the generative and noising processes, using either differentiable simulation or off-policy reinforcement learning (RL). We prove equivalences between families of objectives in the limit of infinitesimal discretization steps, linking entropic RL methods (GFlowNets) with continuous-time objects (partial differential equations and path space measures). We further show that an appropriate choice of coarse time discretization during training allows greatly improved sample efficiency and the use of time-local objectives, achieving competitive performance on standard sampling benchmarks with reduced computational cost.
Abstract:An effective approach for sampling from unnormalized densities is based on the idea of gradually transporting samples from an easy prior to the complicated target distribution. Two popular methods are (1) Sequential Monte Carlo (SMC), where the transport is performed through successive annealed densities via prescribed Markov chains and resampling steps, and (2) recently developed diffusion-based sampling methods, where a learned dynamical transport is used. Despite the common goal, both approaches have different, often complementary, advantages and drawbacks. The resampling steps in SMC allow focusing on promising regions of the space, often leading to robust performance. While the algorithm enjoys asymptotic guarantees, the lack of flexible, learnable transitions can lead to slow convergence. On the other hand, diffusion-based samplers are learned and can potentially better adapt themselves to the target at hand, yet often suffer from training instabilities. In this work, we present a principled framework for combining SMC with diffusion-based samplers by viewing both methods in continuous time and considering measures on path space. This culminates in the new Sequential Controlled Langevin Diffusion (SCLD) sampling method, which is able to utilize the benefits of both methods and reaches improved performance on multiple benchmark problems, in many cases using only 10% of the training budget of previous diffusion-based samplers.
Abstract:We introduce EuroCropsML, an analysis-ready remote sensing machine learning dataset for time series crop type classification of agricultural parcels in Europe. It is the first dataset designed to benchmark transnational few-shot crop type classification algorithms that supports advancements in algorithmic development and research comparability. It comprises 706 683 multi-class labeled data points across 176 classes, featuring annual time series of per-parcel median pixel values from Sentinel-2 L1C data for 2021, along with crop type labels and spatial coordinates. Based on the open-source EuroCrops collection, EuroCropsML is publicly available on Zenodo.
Abstract:The task of sampling from a probability density can be approached as transporting a tractable density function to the target, known as dynamical measure transport. In this work, we tackle it through a principled unified framework using deterministic or stochastic evolutions described by partial differential equations (PDEs). This framework incorporates prior trajectory-based sampling methods, such as diffusion models or Schr\"odinger bridges, without relying on the concept of time-reversals. Moreover, it allows us to propose novel numerical methods for solving the transport task and thus sampling from complicated targets without the need for the normalization constant or data samples. We employ physics-informed neural networks (PINNs) to approximate the respective PDE solutions, implying both conceptional and computational advantages. In particular, PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently, leading to significantly better mode coverage in the sampling task compared to alternative methods. Moreover, they can readily be fine-tuned with Gauss-Newton methods to achieve high accuracy in sampling.
Abstract:Generative modeling via stochastic processes has led to remarkable empirical results as well as to recent advances in their theoretical understanding. In principle, both space and time of the processes can be discrete or continuous. In this work, we study time-continuous Markov jump processes on discrete state spaces and investigate their correspondence to state-continuous diffusion processes given by SDEs. In particular, we revisit the $\textit{Ehrenfest process}$, which converges to an Ornstein-Uhlenbeck process in the infinite state space limit. Likewise, we can show that the time-reversal of the Ehrenfest process converges to the time-reversed Ornstein-Uhlenbeck process. This observation bridges discrete and continuous state spaces and allows to carry over methods from one to the respective other setting. Additionally, we suggest an algorithm for training the time-reversal of Markov jump processes which relies on conditional expectations and can thus be directly related to denoising score matching. We demonstrate our methods in multiple convincing numerical experiments.
Abstract:Recent work shows that path gradient estimators for normalizing flows have lower variance compared to standard estimators for variational inference, resulting in improved training. However, they are often prohibitively more expensive from a computational point of view and cannot be applied to maximum likelihood training in a scalable manner, which severely hinders their widespread adoption. In this work, we overcome these crucial limitations. Specifically, we propose a fast path gradient estimator which improves computational efficiency significantly and works for all normalizing flow architectures of practical relevance. We then show that this estimator can also be applied to maximum likelihood training for which it has a regularizing effect as it can take the form of a given target energy function into account. We empirically establish its superior performance and reduced variance for several natural sciences applications.
Abstract:The numerical approximation of partial differential equations (PDEs) poses formidable challenges in high dimensions since classical grid-based methods suffer from the so-called curse of dimensionality. Recent attempts rely on a combination of Monte Carlo methods and variational formulations, using neural networks for function approximation. Extending previous work (Richter et al., 2021), we argue that tensor trains provide an appealing framework for parabolic PDEs: The combination of reformulations in terms of backward stochastic differential equations and regression-type methods holds the promise of leveraging latent low-rank structures, enabling both compression and efficient computation. Emphasizing a continuous-time viewpoint, we develop iterative schemes, which differ in terms of computational efficiency and robustness. We demonstrate both theoretically and numerically that our methods can achieve a favorable trade-off between accuracy and computational efficiency. While previous methods have been either accurate or fast, we have identified a novel numerical strategy that can often combine both of these aspects.
Abstract:The recent advances in machine learning in various fields of applications can be largely attributed to the rise of deep learning (DL) methods and architectures. Despite being a key technology behind autonomous cars, image processing, speech recognition, etc., a notorious problem remains the lack of theoretical understanding of DL and related interpretability and (adversarial) robustness issues. Understanding the specifics of DL, as compared to, say, other forms of nonlinear regression methods or statistical learning, is interesting from a mathematical perspective, but at the same time it is of crucial importance in practice: treating neural networks as mere black boxes might be sufficient in certain cases, but many applications require waterproof performance guarantees and a deeper understanding of what could go wrong and why it could go wrong. It is probably fair to say that, despite being mathematically well founded as a method to approximate complicated functions, DL is mostly still more like modern alchemy that is firmly in the hands of engineers and computer scientists. Nevertheless, it is evident that certain specifics of DL that could explain its success in applications demands systematic mathematical approaches. In this work, we review robustness issues of DL and particularly bridge concerns and attempts from approximation theory to statistical learning theory. Further, we review Bayesian Deep Learning as a means for uncertainty quantification and rigorous explainability.
Abstract:Recently, a series of papers proposed deep learning-based approaches to sample from unnormalized target densities using controlled diffusion processes. In this work, we identify these approaches as special cases of the Schr\"odinger bridge problem, seeking the most likely stochastic evolution between a given prior distribution and the specified target. We further generalize this framework by introducing a variational formulation based on divergences between path space measures of time-reversed diffusion processes. This abstract perspective leads to practical losses that can be optimized by gradient-based algorithms and includes previous objectives as special cases. At the same time, it allows us to consider divergences other than the reverse Kullback-Leibler divergence that is known to suffer from mode collapse. In particular, we propose the so-called log-variance loss, which exhibits favorable numerical properties and leads to significantly improved performance across all considered approaches.
Abstract:We establish a connection between stochastic optimal control and generative models based on stochastic differential equations (SDEs) such as recently developed diffusion probabilistic models. In particular, we derive a Hamilton-Jacobi-Bellman equation that governs the evolution of the log-densities of the underlying SDE marginals. This perspective allows to transfer methods from optimal control theory to generative modeling. First, we show that the evidence lower bound is a direct consequence of the well-known verification theorem from control theory. Further, we develop a novel diffusion-based method for sampling from unnormalized densities -- a problem frequently occurring in statistics and computational sciences.