Xiamen University
Abstract:This report focuses on spatial data intelligent large models, delving into the principles, methods, and cutting-edge applications of these models. It provides an in-depth discussion on the definition, development history, current status, and trends of spatial data intelligent large models, as well as the challenges they face. The report systematically elucidates the key technologies of spatial data intelligent large models and their applications in urban environments, aerospace remote sensing, geography, transportation, and other scenarios. Additionally, it summarizes the latest application cases of spatial data intelligent large models in themes such as urban development, multimodal systems, remote sensing, smart transportation, and resource environments. Finally, the report concludes with an overview and outlook on the development prospects of spatial data intelligent large models.
Abstract:Spatio-temporal kriging is an important problem in web and social applications, such as Web or Internet of Things, where things (e.g., sensors) connected into a web often come with spatial and temporal properties. It aims to infer knowledge for (the things at) unobserved locations using the data from (the things at) observed locations during a given time period of interest. This problem essentially requires \emph{inductive learning}. Once trained, the model should be able to perform kriging for different locations including newly given ones, without retraining. However, it is challenging to perform accurate kriging results because of the heterogeneous spatial relations and diverse temporal patterns. In this paper, we propose a novel inductive graph representation learning model for spatio-temporal kriging. We first encode heterogeneous spatial relations between the unobserved and observed locations by their spatial proximity, functional similarity, and transition probability. Based on each relation, we accurately aggregate the information of most correlated observed locations to produce inductive representations for the unobserved locations, by jointly modeling their similarities and differences. Then, we design relation-aware gated recurrent unit (GRU) networks to adaptively capture the temporal correlations in the generated sequence representations for each relation. Finally, we propose a multi-relation attention mechanism to dynamically fuse the complex spatio-temporal information at different time steps from multiple relations to compute the kriging output. Experimental results on three real-world datasets show that our proposed model outperforms state-of-the-art methods consistently, and the advantage is more significant when there are fewer observed locations. Our code is available at https://github.com/zhengchuanpan/INCREASE.
Abstract:Representation learning on temporal interaction graphs (TIG) is to model complex networks with the dynamic evolution of interactions arising in a broad spectrum of problems. Existing dynamic embedding methods on TIG discretely update node embeddings merely when an interaction occurs. They fail to capture the continuous dynamic evolution of embedding trajectories of nodes. In this paper, we propose a two-module framework named ConTIG, a continuous representation method that captures the continuous dynamic evolution of node embedding trajectories. With two essential modules, our model exploit three-fold factors in dynamic networks which include latest interaction, neighbor features and inherent characteristics. In the first update module, we employ a continuous inference block to learn the nodes' state trajectories by learning from time-adjacent interaction patterns between node pairs using ordinary differential equations. In the second transform module, we introduce a self-attention mechanism to predict future node embeddings by aggregating historical temporal interaction information. Experiments results demonstrate the superiority of ConTIG on temporal link prediction, temporal node recommendation and dynamic node classification tasks compared with a range of state-of-the-art baselines, especially for long-interval interactions prediction.