Abstract:LLMs have revolutionized the field of artificial intelligence and have emerged as the de-facto tool for many tasks. The current established technology of LLMs is to process input and generate output at the token level. This is in sharp contrast to humans who operate at multiple levels of abstraction, well beyond single words, to analyze information and to generate creative content. In this paper, we present an attempt at an architecture which operates on an explicit higher-level semantic representation, which we name a concept. Concepts are language- and modality-agnostic and represent a higher level idea or action in a flow. Hence, we build a "Large Concept Model". In this study, as proof of feasibility, we assume that a concept corresponds to a sentence, and use an existing sentence embedding space, SONAR, which supports up to 200 languages in both text and speech modalities. The Large Concept Model is trained to perform autoregressive sentence prediction in an embedding space. We explore multiple approaches, namely MSE regression, variants of diffusion-based generation, and models operating in a quantized SONAR space. These explorations are performed using 1.6B parameter models and training data in the order of 1.3T tokens. We then scale one architecture to a model size of 7B parameters and training data of about 2.7T tokens. We perform an experimental evaluation on several generative tasks, namely summarization and a new task of summary expansion. Finally, we show that our model exhibits impressive zero-shot generalization performance to many languages, outperforming existing LLMs of the same size. The training code of our models is freely available.
Abstract:In Natural Language Processing (NLP) classification tasks such as topic categorisation and sentiment analysis, model generalizability is generally measured with standard metrics such as Accuracy, F-Measure, or AUC-ROC. The diversity of metrics, and the arbitrariness of their application suggest that there is no agreement within NLP on a single best metric to use. This lack suggests there has not been sufficient examination of the underlying heuristics which each metric encodes. To address this we compare several standard classification metrics with more 'exotic' metrics and demonstrate that a random-guess normalised Informedness metric is a parsimonious baseline for task performance. To show how important the choice of metric is, we perform extensive experiments on a wide range of NLP tasks including a synthetic scenario, natural language understanding, question answering and machine translation. Across these tasks we use a superset of metrics to rank models and find that Informedness best captures the ideal model characteristics. Finally, we release a Python implementation of Informedness following the SciKitLearn classifier format.
Abstract:Large-scale automatic speech translation systems today lack key features that help machine-mediated communication feel seamless when compared to human-to-human dialogue. In this work, we introduce a family of models that enable end-to-end expressive and multilingual translations in a streaming fashion. First, we contribute an improved version of the massively multilingual and multimodal SeamlessM4T model-SeamlessM4T v2. This newer model, incorporating an updated UnitY2 framework, was trained on more low-resource language data. SeamlessM4T v2 provides the foundation on which our next two models are initiated. SeamlessExpressive enables translation that preserves vocal styles and prosody. Compared to previous efforts in expressive speech research, our work addresses certain underexplored aspects of prosody, such as speech rate and pauses, while also preserving the style of one's voice. As for SeamlessStreaming, our model leverages the Efficient Monotonic Multihead Attention mechanism to generate low-latency target translations without waiting for complete source utterances. As the first of its kind, SeamlessStreaming enables simultaneous speech-to-speech/text translation for multiple source and target languages. To ensure that our models can be used safely and responsibly, we implemented the first known red-teaming effort for multimodal machine translation, a system for the detection and mitigation of added toxicity, a systematic evaluation of gender bias, and an inaudible localized watermarking mechanism designed to dampen the impact of deepfakes. Consequently, we bring major components from SeamlessExpressive and SeamlessStreaming together to form Seamless, the first publicly available system that unlocks expressive cross-lingual communication in real-time. The contributions to this work are publicly released and accessible at https://github.com/facebookresearch/seamless_communication
Abstract:What does it take to create the Babel Fish, a tool that can help individuals translate speech between any two languages? While recent breakthroughs in text-based models have pushed machine translation coverage beyond 200 languages, unified speech-to-speech translation models have yet to achieve similar strides. More specifically, conventional speech-to-speech translation systems rely on cascaded systems that perform translation progressively, putting high-performing unified systems out of reach. To address these gaps, we introduce SeamlessM4T, a single model that supports speech-to-speech translation, speech-to-text translation, text-to-speech translation, text-to-text translation, and automatic speech recognition for up to 100 languages. To build this, we used 1 million hours of open speech audio data to learn self-supervised speech representations with w2v-BERT 2.0. Subsequently, we created a multimodal corpus of automatically aligned speech translations. Filtered and combined with human-labeled and pseudo-labeled data, we developed the first multilingual system capable of translating from and into English for both speech and text. On FLEURS, SeamlessM4T sets a new standard for translations into multiple target languages, achieving an improvement of 20% BLEU over the previous SOTA in direct speech-to-text translation. Compared to strong cascaded models, SeamlessM4T improves the quality of into-English translation by 1.3 BLEU points in speech-to-text and by 2.6 ASR-BLEU points in speech-to-speech. Tested for robustness, our system performs better against background noises and speaker variations in speech-to-text tasks compared to the current SOTA model. Critically, we evaluated SeamlessM4T on gender bias and added toxicity to assess translation safety. Finally, all contributions in this work are open-sourced and accessible at https://github.com/facebookresearch/seamless_communication
Abstract:Hallucinations in machine translation are translations that contain information completely unrelated to the input. Omissions are translations that do not include some of the input information. While both cases tend to be catastrophic errors undermining user trust, annotated data with these types of pathologies is extremely scarce and is limited to a few high-resource languages. In this work, we release an annotated dataset for the hallucination and omission phenomena covering 18 translation directions with varying resource levels and scripts. Our annotation covers different levels of partial and full hallucinations as well as omissions both at the sentence and at the word level. Additionally, we revisit previous methods for hallucination and omission detection, show that conclusions made based on a single language pair largely do not hold for a large-scale evaluation, and establish new solid baselines.
Abstract:We propose a novel RoBERTa-based model, RoPPT, which introduces a target-oriented parse tree structure in metaphor detection. Compared to existing models, RoPPT focuses on semantically relevant information and achieves the state-of-the-art on several main metaphor datasets. We also compare our approach against several popular denoising and pruning methods, demonstrating the effectiveness of our approach in context denoising. Our code and dataset can be found at https://github.com/MajiBear000/RoPPT
Abstract:In this paper, we propose FrameBERT, a RoBERTa-based model that can explicitly learn and incorporate FrameNet Embeddings for concept-level metaphor detection. FrameBERT not only achieves better or comparable performance to the state-of-the-art, but also is more explainable and interpretable compared to existing models, attributing to its ability of accounting for external knowledge of FrameNet.
Abstract:While the problem of hallucinations in neural machine translation has long been recognized, so far the progress on its alleviation is very little. Indeed, recently it turned out that without artificially encouraging models to hallucinate, previously existing methods fall short and even the standard sequence log-probability is more informative. It means that characteristics internal to the model can give much more information than we expect, and before using external models and measures, we first need to ask: how far can we go if we use nothing but the translation model itself ? We propose to use a method that evaluates the percentage of the source contribution to a generated translation. Intuitively, hallucinations are translations "detached" from the source, hence they can be identified by low source contribution. This method improves detection accuracy for the most severe hallucinations by a factor of 2 and is able to alleviate hallucinations at test time on par with the previous best approach that relies on external models. Next, if we move away from internal model characteristics and allow external tools, we show that using sentence similarity from cross-lingual embeddings further improves these results.
Abstract:This paper describes the SLT-CDT-UoS group's submission to the first Special Task on Formality Control for Spoken Language Translation, part of the IWSLT 2022 Evaluation Campaign. Our efforts were split between two fronts: data engineering and altering the objective function for best hypothesis selection. We used language-independent methods to extract formal and informal sentence pairs from the provided corpora; using English as a pivot language, we propagated formality annotations to languages treated as zero-shot in the task; we also further improved formality controlling with a hypothesis re-ranking approach. On the test sets for English-to-German and English-to-Spanish, we achieved an average accuracy of .935 within the constrained setting and .995 within unconstrained setting. In a zero-shot setting for English-to-Russian and English-to-Italian, we scored average accuracy of .590 for constrained setting and .659 for unconstrained.
Abstract:Unlike English, morphologically rich languages can reveal characteristics of speakers or their conversational partners, such as gender and number, via pronouns, morphological endings of words and syntax. When translating from English to such languages, a machine translation model needs to opt for a certain interpretation of textual context, which may lead to serious translation errors if extra-textual information is unavailable. We investigate this challenge in the English-to-Polish language direction. We focus on the underresearched problem of utilising external metadata in automatic translation of TV dialogue, proposing a case study where a wide range of approaches for controlling attributes in translation is employed in a multi-attribute scenario. The best model achieves an improvement of +5.81 chrF++/+6.03 BLEU, with other models achieving competitive performance. We additionally contribute a novel attribute-annotated dataset of Polish TV dialogue and a morphological analysis script used to evaluate attribute control in models.