Abstract:\textbf{Purpose:} Document Visual Question Answering (document VQA) challenges multimodal systems to holistically handle textual, layout, and visual modalities to provide appropriate answers. Document VQA has gained popularity in recent years due to the increasing amount of documents and the high demand for digitization. Nonetheless, most of document VQA datasets are developed in high-resource languages such as English. \textbf{Methods:} In this paper, we present ReceiptVQA (\textbf{Receipt} \textbf{V}isual \textbf{Q}uestion \textbf{A}nswering), the initial large-scale document VQA dataset in Vietnamese dedicated to receipts, a document kind with high commercial potentials. The dataset encompasses \textbf{9,000+} receipt images and \textbf{60,000+} manually annotated question-answer pairs. In addition to our study, we introduce LiGT (\textbf{L}ayout-\textbf{i}nfused \textbf{G}enerative \textbf{T}ransformer), a layout-aware encoder-decoder architecture designed to leverage embedding layers of language models to operate layout embeddings, minimizing the use of additional neural modules. \textbf{Results:} Experiments on ReceiptVQA show that our architecture yielded promising performance, achieving competitive results compared with outstanding baselines. Furthermore, throughout analyzing experimental results, we found evident patterns that employing encoder-only model architectures has considerable disadvantages in comparison to architectures that can generate answers. We also observed that it is necessary to combine multiple modalities to tackle our dataset, despite the critical role of semantic understanding from language models. \textbf{Conclusion:} We hope that our work will encourage and facilitate future development in Vietnamese document VQA, contributing to a diverse multimodal research community in the Vietnamese language.
Abstract:This paper presents ViSP, a high-quality Vietnamese dataset for sentence paraphrasing, consisting of 1.2M original-paraphrase pairs collected from various domains. The dataset was constructed using a hybrid approach that combines automatic paraphrase generation with manual evaluation to ensure high quality. We conducted experiments using methods such as back-translation, EDA, and baseline models like BART and T5, as well as large language models (LLMs), including GPT-4o, Gemini-1.5, Aya, Qwen-2.5, and Meta-Llama-3.1 variants. To the best of our knowledge, this is the first large-scale study on Vietnamese paraphrasing. We hope that our dataset and findings will serve as a valuable foundation for future research and applications in Vietnamese paraphrase tasks.
Abstract:ViSoLex is an open-source system designed to address the unique challenges of lexical normalization for Vietnamese social media text. The platform provides two core services: Non-Standard Word (NSW) Lookup and Lexical Normalization, enabling users to retrieve standard forms of informal language and standardize text containing NSWs. ViSoLex's architecture integrates pre-trained language models and weakly supervised learning techniques to ensure accurate and efficient normalization, overcoming the scarcity of labeled data in Vietnamese. This paper details the system's design, functionality, and its applications for researchers and non-technical users. Additionally, ViSoLex offers a flexible, customizable framework that can be adapted to various datasets and research requirements. By publishing the source code, ViSoLex aims to contribute to the development of more robust Vietnamese natural language processing tools and encourage further research in lexical normalization. Future directions include expanding the system's capabilities for additional languages and improving the handling of more complex non-standard linguistic patterns.
Abstract:The rapid spread of information in the digital age highlights the critical need for effective fact-checking tools, particularly for languages with limited resources, such as Vietnamese. In response to this challenge, we introduce ViFactCheck, the first publicly available benchmark dataset designed specifically for Vietnamese fact-checking across multiple online news domains. This dataset contains 7,232 human-annotated pairs of claim-evidence combinations sourced from reputable Vietnamese online news, covering 12 diverse topics. It has been subjected to a meticulous annotation process to ensure high quality and reliability, achieving a Fleiss Kappa inter-annotator agreement score of 0.83. Our evaluation leverages state-of-the-art pre-trained and large language models, employing fine-tuning and prompting techniques to assess performance. Notably, the Gemma model demonstrated superior effectiveness, with an impressive macro F1 score of 89.90%, thereby establishing a new standard for fact-checking benchmarks. This result highlights the robust capabilities of Gemma in accurately identifying and verifying facts in Vietnamese. To further promote advances in fact-checking technology and improve the reliability of digital media, we have made the ViFactCheck dataset, model checkpoints, fact-checking pipelines, and source code freely available on GitHub. This initiative aims to inspire further research and enhance the accuracy of information in low-resource languages.
Abstract:In this paper, we aimed to develop a neural parser for Vietnamese based on simplified Head-Driven Phrase Structure Grammar (HPSG). The existing corpora, VietTreebank and VnDT, had around 15% of constituency and dependency tree pairs that did not adhere to simplified HPSG rules. To attempt to address the issue of the corpora not adhering to simplified HPSG rules, we randomly permuted samples from the training and development sets to make them compliant with simplified HPSG. We then modified the first simplified HPSG Neural Parser for the Penn Treebank by replacing it with the PhoBERT or XLM-RoBERTa models, which can encode Vietnamese texts. We conducted experiments on our modified VietTreebank and VnDT corpora. Our extensive experiments showed that the simplified HPSG Neural Parser achieved a new state-of-the-art F-score of 82% for constituency parsing when using the same predicted part-of-speech (POS) tags as the self-attentive constituency parser. Additionally, it outperformed previous studies in dependency parsing with a higher Unlabeled Attachment Score (UAS). However, our parser obtained lower Labeled Attachment Score (LAS) scores likely due to our focus on arc permutation without changing the original labels, as we did not consult with a linguistic expert. Lastly, the research findings of this paper suggest that simplified HPSG should be given more attention to linguistic expert when developing treebanks for Vietnamese natural language processing.
Abstract:Natural Language Inference (NLI) is a task within Natural Language Processing (NLP) that holds value for various AI applications. However, there have been limited studies on Natural Language Inference in Vietnamese that explore the concept of joint models. Therefore, we conducted experiments using various combinations of contextualized language models (CLM) and neural networks. We use CLM to create contextualized work presentations and use Neural Networks for classification. Furthermore, we have evaluated the strengths and weaknesses of each joint model and identified the model failure points in the Vietnamese context. The highest F1 score in this experiment, up to 82.78% in the benchmark dataset (ViNLI). By conducting experiments with various models, the most considerable size of the CLM is XLM-R (355M). That combination has consistently demonstrated superior performance compared to fine-tuning strong pre-trained language models like PhoBERT (+6.58%), mBERT (+19.08%), and XLM-R (+0.94%) in terms of F1-score. This article aims to introduce a novel approach or model that attains improved performance for Vietnamese NLI. Overall, we find that the joint approach of CLM and neural networks is simple yet capable of achieving high-quality performance, which makes it suitable for applications that require efficient resource utilization.
Abstract:Large Language Models (LLMs), with gradually improving reading comprehension and reasoning capabilities, are being applied to a range of complex language tasks, including the automatic generation of language data for various purposes. However, research on applying LLMs for automatic data generation in low-resource languages like Vietnamese is still underdeveloped and lacks comprehensive evaluation. In this paper, we explore the use of LLMs for automatic data generation for the Vietnamese fact-checking task, which faces significant data limitations. Specifically, we focus on fact-checking data where claims are synthesized from multiple evidence sentences to assess the information synthesis capabilities of LLMs. We develop an automatic data construction process using simple prompt techniques on LLMs and explore several methods to improve the quality of the generated data. To evaluate the quality of the data generated by LLMs, we conduct both manual quality assessments and performance evaluations using language models. Experimental results and manual evaluations illustrate that while the quality of the generated data has significantly improved through fine-tuning techniques, LLMs still cannot match the data quality produced by humans.
Abstract:Vietnamese, a low-resource language, is typically categorized into three primary dialect groups that belong to Northern, Central, and Southern Vietnam. However, each province within these regions exhibits its own distinct pronunciation variations. Despite the existence of various speech recognition datasets, none of them has provided a fine-grained classification of the 63 dialects specific to individual provinces of Vietnam. To address this gap, we introduce Vietnamese Multi-Dialect (ViMD) dataset, a novel comprehensive dataset capturing the rich diversity of 63 provincial dialects spoken across Vietnam. Our dataset comprises 102.56 hours of audio, consisting of approximately 19,000 utterances, and the associated transcripts contain over 1.2 million words. To provide benchmarks and simultaneously demonstrate the challenges of our dataset, we fine-tune state-of-the-art pre-trained models for two downstream tasks: (1) Dialect identification and (2) Speech recognition. The empirical results suggest two implications including the influence of geographical factors on dialects, and the constraints of current approaches in speech recognition tasks involving multi-dialect speech data. Our dataset is available for research purposes.
Abstract:This study introduces an innovative automatic labeling framework to address the challenges of lexical normalization in social media texts for low-resource languages like Vietnamese. Social media data is rich and diverse, but the evolving and varied language used in these contexts makes manual labeling labor-intensive and expensive. To tackle these issues, we propose a framework that integrates semi-supervised learning with weak supervision techniques. This approach enhances the quality of training dataset and expands its size while minimizing manual labeling efforts. Our framework automatically labels raw data, converting non-standard vocabulary into standardized forms, thereby improving the accuracy and consistency of the training data. Experimental results demonstrate the effectiveness of our weak supervision framework in normalizing Vietnamese text, especially when utilizing Pre-trained Language Models. The proposed framework achieves an impressive F1-score of 82.72% and maintains vocabulary integrity with an accuracy of up to 99.22%. Additionally, it effectively handles undiacritized text under various conditions. This framework significantly enhances natural language normalization quality and improves the accuracy of various NLP tasks, leading to an average accuracy increase of 1-3%.
Abstract:In this article, we propose the R2GQA system, a Retriever-Reader-Generator Question Answering system, consisting of three main components: Document Retriever, Machine Reader, and Answer Generator. The Retriever module employs advanced information retrieval techniques to extract the context of articles from a dataset of legal regulation documents. The Machine Reader module utilizes state-of-the-art natural language understanding algorithms to comprehend the retrieved documents and extract answers. Finally, the Generator module synthesizes the extracted answers into concise and informative responses to questions of students regarding legal regulations. Furthermore, we built the ViRHE4QA dataset in the domain of university training regulations, comprising 9,758 question-answer pairs with a rigorous construction process. This is the first Vietnamese dataset in the higher regulations domain with various types of answers, both extractive and abstractive. In addition, the R2GQA system is the first system to offer abstractive answers in Vietnamese. This paper discusses the design and implementation of each module within the R2GQA system on the ViRHE4QA dataset, highlighting their functionalities and interactions. Furthermore, we present experimental results demonstrating the effectiveness and utility of the proposed system in supporting the comprehension of students of legal regulations in higher education settings. In general, the R2GQA system and the ViRHE4QA dataset promise to contribute significantly to related research and help students navigate complex legal documents and regulations, empowering them to make informed decisions and adhere to institutional policies effectively. Our dataset is available for research purposes.