Abstract:Referring remote sensing image segmentation is crucial for achieving fine-grained visual understanding through free-format textual input, enabling enhanced scene and object extraction in remote sensing applications. Current research primarily utilizes pre-trained language models to encode textual descriptions and align them with visual modalities, thereby facilitating the expression of relevant visual features. However, these approaches often struggle to establish robust alignments between fine-grained semantic concepts, leading to inconsistent representations across textual and visual information. To address these limitations, we introduce a referring remote sensing image segmentation foundational model, RSRefSeg. RSRefSeg leverages CLIP for visual and textual encoding, employing both global and local textual semantics as filters to generate referring-related visual activation features in the latent space. These activated features then serve as input prompts for SAM, which refines the segmentation masks through its robust visual generalization capabilities. Experimental results on the RRSIS-D dataset demonstrate that RSRefSeg outperforms existing methods, underscoring the effectiveness of foundational models in enhancing multimodal task comprehension. The code is available at \url{https://github.com/KyanChen/RSRefSeg}.
Abstract:Remote sensing image semantic change detection is a method used to analyze remote sensing images, aiming to identify areas of change as well as categorize these changes within images of the same location taken at different times. Traditional change detection methods often face challenges in generalizing across semantic categories in practical scenarios. To address this issue, we introduce a novel approach called Semantic-CD, specifically designed for semantic change detection in remote sensing images. This method incorporates the open vocabulary semantics from the vision-language foundation model, CLIP. By utilizing CLIP's extensive vocabulary knowledge, our model enhances its ability to generalize across categories and improves segmentation through fully decoupled multi-task learning, which includes both binary change detection and semantic change detection tasks. Semantic-CD consists of four main components: a bi-temporal CLIP visual encoder for extracting features from bi-temporal images, an open semantic prompter for creating semantic cost volume maps with open vocabulary, a binary change detection decoder for generating binary change detection masks, and a semantic change detection decoder for producing semantic labels. Experimental results on the SECOND dataset demonstrate that Semantic-CD achieves more accurate masks and reduces semantic classification errors, illustrating its effectiveness in applying semantic priors from vision-language foundation models to SCD tasks.
Abstract:Generative foundation models have advanced large-scale text-driven natural image generation, becoming a prominent research trend across various vertical domains. However, in the remote sensing field, there is still a lack of research on large-scale text-to-image (text2image) generation technology. Existing remote sensing image-text datasets are small in scale and confined to specific geographic areas and scene types. Besides, existing text2image methods have struggled to achieve global-scale, multi-resolution controllable, and unbounded image generation. To address these challenges, this paper presents two key contributions: the Git-10M dataset and the Text2Earth foundation model. Git-10M is a global-scale image-text dataset comprising 10 million image-text pairs, 5 times larger than the previous largest one. The dataset covers a wide range of geographic scenes and contains resolution information, significantly surpassing existing datasets in both size and diversity. Building on Git-10M, we propose Text2Earth, a 1.3 billion parameter generative foundation model based on the diffusion framework to model global-scale remote sensing scenes. Text2Earth integrates a resolution guidance mechanism, enabling users to specify image resolutions. A dynamic condition adaptation strategy is proposed for training and inference to improve image quality. Text2Earth excels in zero-shot text2image generation and demonstrates robust generalization and flexibility across multiple tasks, including unbounded scene construction, image editing, and cross-modal image generation. This robust capability surpasses previous models restricted to the basic fixed size and limited scene types. On the previous benchmark dataset, Text2Earth outperforms previous models with an improvement of +26.23 FID and +20.95% Zero-shot Cls-OA metric.Our project page is \url{https://chen-yang-liu.github.io/Text2Earth}
Abstract:Temporal image analysis in remote sensing has traditionally centered on change detection, which identifies regions of change between images captured at different times. However, change detection remains limited by its focus on visual-level interpretation, often lacking contextual or descriptive information. The rise of Vision-Language Models (VLMs) has introduced a new dimension to remote sensing temporal image analysis by integrating visual information with natural language, creating an avenue for advanced interpretation of temporal image changes. Remote Sensing Temporal VLMs (RSTVLMs) allow for dynamic interactions, generating descriptive captions, answering questions, and providing a richer semantic understanding of temporal images. This temporal vision-language capability is particularly valuable for complex remote sensing applications, where higher-level insights are crucial. This paper comprehensively reviews the progress of RSTVLM research, with a focus on the latest VLM applications for temporal image analysis. We categorize and discuss core methodologies, datasets, and metrics, highlight recent advances in temporal vision-language tasks, and outline key challenges and future directions for research in this emerging field. This survey fills a critical gap in the literature by providing an integrated overview of RSTVLM, offering a foundation for further advancements in remote sensing temporal image understanding. We will keep tracing related works at \url{https://github.com/Chen-Yang-Liu/Awesome-RS-Temporal-VLM}
Abstract:Segmenting anatomical structures and lesions from ultrasound images contributes to disease assessment, diagnosis, and treatment. Weakly supervised learning (WSL) based on sparse annotation has achieved encouraging performance and demonstrated the potential to reduce annotation costs. However, ultrasound images often suffer from issues such as poor contrast, unclear edges, as well as varying sizes and locations of lesions. This makes it challenging for convolutional networks with local receptive fields to extract global morphological features from the sparse information provided by scribble annotations. Recently, the visual Mamba based on state space sequence models (SSMs) has significantly reduced computational complexity while ensuring long-range dependencies compared to Transformers. Consequently, for the first time, we apply scribble-based WSL to ultrasound image segmentation and propose a novel hybrid CNN-Mamba framework. Furthermore, due to the characteristics of ultrasound images and insufficient supervision signals, existing consistency regularization often filters out predictions near decision boundaries, leading to unstable predictions of edges. Hence, we introduce the Dempster-Shafer theory (DST) of evidence to devise an Evidence-Guided Consistency (EGC) strategy, which leverages high-evidence predictions more likely to occur near high-density regions to guide low-evidence predictions potentially present near decision boundaries for optimization. During training, the collaboration between the CNN branch and the Mamba branch in the proposed framework draws inspiration from each other based on the EGC strategy. Extensive experiments on four ultrasound public datasets for binary-class and multi-class segmentation demonstrate the competitiveness of the proposed method. The scribble-annotated dataset and code will be made available on https://github.com/GtLinyer/MambaEviScrib.
Abstract:We present Open-CD, a change detection toolbox that contains a rich set of change detection methods as well as related components and modules. The toolbox started from a series of open source general vision task tools, including OpenMMLab Toolkits, PyTorch Image Models, etc. It gradually evolves into a unified platform that covers many popular change detection methods and contemporary modules. It not only includes training and inference codes, but also provides some useful scripts for data analysis. We believe this toolbox is by far the most complete change detection toolbox. In this report, we introduce the various features, supported methods and applications of Open-CD. In addition, we also conduct a benchmarking study on different methods and components. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new change detectors. Code and models are available at \url{https://github.com/likyoo/open-cd}. Pioneeringly, this report also includes brief descriptions of the algorithms supported in Open-CD, mainly contributed by their authors. We sincerely encourage researchers in this field to participate in this project and work together to create a more open community. This toolkit and report will be kept updated.
Abstract:Remote sensing image change captioning (RSICC) aims to articulate the changes in objects of interest within bi-temporal remote sensing images using natural language. Given the limitations of current RSICC methods in expressing general features across multi-temporal and spatial scenarios, and their deficiency in providing granular, robust, and precise change descriptions, we introduce a novel change captioning (CC) method based on the foundational knowledge and semantic guidance, which we term Semantic-CC. Semantic-CC alleviates the dependency of high-generalization algorithms on extensive annotations by harnessing the latent knowledge of foundation models, and it generates more comprehensive and accurate change descriptions guided by pixel-level semantics from change detection (CD). Specifically, we propose a bi-temporal SAM-based encoder for dual-image feature extraction; a multi-task semantic aggregation neck for facilitating information interaction between heterogeneous tasks; a straightforward multi-scale change detection decoder to provide pixel-level semantic guidance; and a change caption decoder based on the large language model (LLM) to generate change description sentences. Moreover, to ensure the stability of the joint training of CD and CC, we propose a three-stage training strategy that supervises different tasks at various stages. We validate the proposed method on the LEVIR-CC and LEVIR-CD datasets. The experimental results corroborate the complementarity of CD and CC, demonstrating that Semantic-CC can generate more accurate change descriptions and achieve optimal performance across both tasks.
Abstract:Recently, the Mamba architecture based on state space models has demonstrated remarkable performance in a series of natural language processing tasks and has been rapidly applied to remote sensing change detection (CD) tasks. However, most methods enhance the global receptive field by directly modifying the scanning mode of Mamba, neglecting the crucial role that local information plays in dense prediction tasks (e.g., CD). In this article, we propose a model called CDMamba, which effectively combines global and local features for handling CD tasks. Specifically, the Scaled Residual ConvMamba (SRCM) block is proposed to utilize the ability of Mamba to extract global features and convolution to enhance the local details, to alleviate the issue that current Mamba-based methods lack detailed clues and are difficult to achieve fine detection in dense prediction tasks. Furthermore, considering the characteristics of bi-temporal feature interaction required for CD, the Adaptive Global Local Guided Fusion (AGLGF) block is proposed to dynamically facilitate the bi-temporal interaction guided by other temporal global/local features. Our intuition is that more discriminative change features can be acquired with the guidance of other temporal features. Extensive experiments on three datasets demonstrate that our proposed CDMamba outperforms the current state-of-the-art methods. Our code will be open-sourced at https://github.com/zmoka-zht/CDMamba.
Abstract:Remote Sensing Image Change Captioning (RSICC) aims to describe surface changes between multi-temporal remote sensing images in language, including the changed object categories, locations, and dynamics of changing objects (e.g., added or disappeared). This poses challenges to spatial and temporal modeling of bi-temporal features. Despite previous methods progressing in the spatial change perception, there are still weaknesses in joint spatial-temporal modeling. To address this, in this paper, we propose a novel RSCaMa model, which achieves efficient joint spatial-temporal modeling through multiple CaMa layers, enabling iterative refinement of bi-temporal features. To achieve efficient spatial modeling, we introduce the recently popular Mamba (a state space model) with a global receptive field and linear complexity into the RSICC task and propose the Spatial Difference-aware SSM (SD-SSM), overcoming limitations of previous CNN- and Transformer-based methods in the receptive field and computational complexity. SD-SSM enhances the model's ability to capture spatial changes sharply. In terms of efficient temporal modeling, considering the potential correlation between the temporal scanning characteristics of Mamba and the temporality of the RSICC, we propose the Temporal-Traversing SSM (TT-SSM), which scans bi-temporal features in a temporal cross-wise manner, enhancing the model's temporal understanding and information interaction. Experiments validate the effectiveness of the efficient joint spatial-temporal modeling and demonstrate the outstanding performance of RSCaMa and the potential of the Mamba in the RSICC task. Additionally, we systematically compare three different language decoders, including Mamba, GPT-style decoder, and Transformer decoder, providing valuable insights for future RSICC research. The code will be available at \emph{\url{https://github.com/Chen-Yang-Liu/RSCaMa}}
Abstract:The segmentation and interpretation of the Martian surface play a pivotal role in Mars exploration, providing essential data for the trajectory planning and obstacle avoidance of rovers. However, the complex topography, similar surface features, and the lack of extensive annotated data pose significant challenges to the high-precision semantic segmentation of the Martian surface. To address these challenges, we propose a novel encoder-decoder based Mars segmentation network, termed MarsSeg. Specifically, we employ an encoder-decoder structure with a minimized number of down-sampling layers to preserve local details. To facilitate a high-level semantic understanding across the shadow multi-level feature maps, we introduce a feature enhancement connection layer situated between the encoder and decoder. This layer incorporates Mini Atrous Spatial Pyramid Pooling (Mini-ASPP), Polarized Self-Attention (PSA), and Strip Pyramid Pooling Module (SPPM). The Mini-ASPP and PSA are specifically designed for shadow feature enhancement, thereby enabling the expression of local details and small objects. Conversely, the SPPM is employed for deep feature enhancement, facilitating the extraction of high-level semantic category-related information. Experimental results derived from the Mars-Seg and AI4Mars datasets substantiate that the proposed MarsSeg outperforms other state-of-the-art methods in segmentation performance, validating the efficacy of each proposed component.