Abstract:Modern physics simulation often involves multiple functions of interests, and traditional numerical approaches are known to be complex and computationally costly. While machine learning-based surrogate models can offer significant cost reductions, most focus on a single task, such as forward prediction, and typically lack uncertainty quantification -- an essential component in many applications. To overcome these limitations, we propose Arbitrarily-Conditioned Multi-Functional Diffusion (ACMFD), a versatile probabilistic surrogate model for multi-physics emulation. ACMFD can perform a wide range of tasks within a single framework, including forward prediction, various inverse problems, and simulating data for entire systems or subsets of quantities conditioned on others. Specifically, we extend the standard Denoising Diffusion Probabilistic Model (DDPM) for multi-functional generation by modeling noise as Gaussian processes (GP). We then introduce an innovative denoising loss. The training involves randomly sampling the conditioned part and fitting the corresponding predicted noise to zero, enabling ACMFD to flexibly generate function values conditioned on any other functions or quantities. To enable efficient training and sampling, and to flexibly handle irregularly sampled data, we use GPs to interpolate function samples onto a grid, inducing a Kronecker product structure for efficient computation. We demonstrate the advantages of ACMFD across several fundamental multi-physics systems.
Abstract:This paper introduces a novel kernel learning framework toward efficiently solving nonlinear partial differential equations (PDEs). In contrast to the state-of-the-art kernel solver that embeds differential operators within kernels, posing challenges with a large number of collocation points, our approach eliminates these operators from the kernel. We model the solution using a standard kernel interpolation form and differentiate the interpolant to compute the derivatives. Our framework obviates the need for complex Gram matrix construction between solutions and their derivatives, allowing for a straightforward implementation and scalable computation. As an instance, we allocate the collocation points on a grid and adopt a product kernel, which yields a Kronecker product structure in the interpolation. This structure enables us to avoid computing the full Gram matrix, reducing costs and scaling efficiently to a large number of collocation points. We provide a proof of the convergence and rate analysis of our method under appropriate regularity assumptions. In numerical experiments, we demonstrate the advantages of our method in solving several benchmark PDEs.
Abstract:There has been a long-standing and widespread belief that Bayesian Optimization (BO) with standard Gaussian process (GP), referred to as standard BO, is ineffective in high-dimensional optimization problems. This perception may partly stem from the intuition that GPs struggle with high-dimensional inputs for covariance modeling and function estimation. While these concerns seem reasonable, empirical evidence supporting this belief is lacking. In this paper, we systematically investigated BO with standard GP regression across a variety of synthetic and real-world benchmark problems for high-dimensional optimization. Surprisingly, the performance with standard GP consistently ranks among the best, often outperforming existing BO methods specifically designed for high-dimensional optimization by a large margin. Contrary to the stereotype, we found that standard GP can serve as a capable surrogate for learning high-dimensional target functions. Without strong structural assumptions, BO with standard GP not only excels in high-dimensional optimization but also proves robust in accommodating various structures within the target functions. Furthermore, with standard GP, achieving promising optimization performance is possible by only using maximum likelihood estimation, eliminating the need for expensive Markov-Chain Monte Carlo (MCMC) sampling that might be required by more complex surrogate models. We thus advocate for a re-evaluation and in-depth study of the potential of standard BO in addressing high-dimensional problems.