Abstract:The recent advancement of generative foundational models has ushered in a new era of image generation in the realm of natural images, revolutionizing art design, entertainment, environment simulation, and beyond. Despite producing high-quality samples, existing methods are constrained to generating images of scenes at a limited scale. In this paper, we present MetaEarth, a generative foundation model that breaks the barrier by scaling image generation to a global level, exploring the creation of worldwide, multi-resolution, unbounded, and virtually limitless remote sensing images. In MetaEarth, we propose a resolution-guided self-cascading generative framework, which enables the generating of images at any region with a wide range of geographical resolutions. To achieve unbounded and arbitrary-sized image generation, we design a novel noise sampling strategy for denoising diffusion models by analyzing the generation conditions and initial noise. To train MetaEarth, we construct a large dataset comprising multi-resolution optical remote sensing images with geographical information. Experiments have demonstrated the powerful capabilities of our method in generating global-scale images. Additionally, the MetaEarth serves as a data engine that can provide high-quality and rich training data for downstream tasks. Our model opens up new possibilities for constructing generative world models by simulating Earth visuals from an innovative overhead perspective.
Abstract:Contemporary transfer learning-based methods to alleviate the data insufficiency in change detection (CD) are mainly based on ImageNet pre-training. Self-supervised learning (SSL) has recently been introduced to remote sensing (RS) for learning in-domain representations. Here, we propose a semantic decoupled representation learning for RS image CD. Typically, the object of interest (e.g., building) is relatively small compared to the vast background. Different from existing methods expressing an image into one representation vector that may be dominated by irrelevant land-covers, we disentangle representations of different semantic regions by leveraging the semantic mask. We additionally force the model to distinguish different semantic representations, which benefits the recognition of objects of interest in the downstream CD task. We construct a dataset of bitemporal images with semantic masks in an effortless manner for pre-training. Experiments on two CD datasets show our model outperforms ImageNet pre-training, in-domain supervised pre-training, and several recent SSL methods.