Abstract:Despite success in volume-to-volume translations in medical images, most existing models struggle to effectively capture the inherent volumetric distribution using 3D representations. The current state-of-the-art approach combines multiple 2D-based networks through weighted averaging, thereby neglecting the 3D spatial structures. Directly training 3D models in medical imaging presents significant challenges due to high computational demands and the need for large-scale datasets. To address these challenges, we introduce Diff-Ensembler, a novel hybrid 2D-3D model for efficient and effective volumetric translations by ensembling perpendicularly trained 2D diffusion models with a 3D network in each diffusion step. Moreover, our model can naturally be used to ensemble diffusion models conditioned on different modalities, allowing flexible and accurate fusion of input conditions. Extensive experiments demonstrate that Diff-Ensembler attains superior accuracy and volumetric realism in 3D medical image super-resolution and modality translation. We further demonstrate the strength of our model's volumetric realism using tumor segmentation as a downstream task.
Abstract:We study the problem of robot navigation in dense and interactive crowds with environmental constraints such as corridors and furniture. Previous methods fail to consider all types of interactions among agents and obstacles, leading to unsafe and inefficient robot paths. In this article, we leverage a graph-based representation of crowded and constrained scenarios and propose a structured framework to learn robot navigation policies with deep reinforcement learning. We first split the representations of different components in the environment and propose a heterogeneous spatio-temporal (st) graph to model distinct interactions among humans, robots, and obstacles. Based on the heterogeneous st-graph, we propose HEIGHT, a novel navigation policy network architecture with different components to capture heterogeneous interactions among entities through space and time. HEIGHT utilizes attention mechanisms to prioritize important interactions and a recurrent network to track changes in the dynamic scene over time, encouraging the robot to avoid collisions adaptively. Through extensive simulation and real-world experiments, we demonstrate that HEIGHT outperforms state-of-the-art baselines in terms of success and efficiency in challenging navigation scenarios. Furthermore, we demonstrate that our pipeline achieves better zero-shot generalization capability than previous works when the densities of humans and obstacles change. More videos are available at https://sites.google.com/view/crowdnav-height/home.
Abstract:Employing a teleoperation system for gathering demonstrations offers the potential for more efficient learning of robot manipulation. However, teleoperating a robot arm equipped with a dexterous hand or gripper, via a teleoperation system poses significant challenges due to its high dimensionality, complex motions, and differences in physiological structure. In this study, we introduce a novel system for joint learning between human operators and robots, that enables human operators to share control of a robot end-effector with a learned assistive agent, facilitating simultaneous human demonstration collection and robot manipulation teaching. In this setup, as data accumulates, the assistive agent gradually learns. Consequently, less human effort and attention are required, enhancing the efficiency of the data collection process. It also allows the human operator to adjust the control ratio to achieve a trade-off between manual and automated control. We conducted experiments in both simulated environments and physical real-world settings. Through user studies and quantitative evaluations, it is evident that the proposed system could enhance data collection efficiency and reduce the need for human adaptation while ensuring the collected data is of sufficient quality for downstream tasks. Videos are available at https://norweig1an.github.io/human-agent-joint-learning.github.io/.
Abstract:We investigate the feasibility of deploying reinforcement learning (RL) policies for constrained crowd navigation using a low-fidelity simulator. We introduce a representation of the dynamic environment, separating human and obstacle representations. Humans are represented through detected states, while obstacles are represented as computed point clouds based on maps and robot localization. This representation enables RL policies trained in a low-fidelity simulator to deploy in real world with a reduced sim2real gap. Additionally, we propose a spatio-temporal graph to model the interactions between agents and obstacles. Based on the graph, we use attention mechanisms to capture the robot-human, human-human, and human-obstacle interactions. Our method significantly improves navigation performance in both simulated and real-world environments. Video demonstrations can be found at https://sites.google.com/view/constrained-crowdnav/home.
Abstract:Stowing, the task of placing objects in cluttered shelves or bins, is a common task in warehouse and manufacturing operations. However, this task is still predominantly carried out by human workers as stowing is challenging to automate due to the complex multi-object interactions and long-horizon nature of the task. Previous works typically involve extensive data collection and costly human labeling of semantic priors across diverse object categories. This paper presents a method to learn a generalizable robot stowing policy from predictive model of object interactions and a single demonstration with behavior primitives. We propose a novel framework that utilizes Graph Neural Networks to predict object interactions within the parameter space of behavioral primitives. We further employ primitive-augmented trajectory optimization to search the parameters of a predefined library of heterogeneous behavioral primitives to instantiate the control action. Our framework enables robots to proficiently execute long-horizon stowing tasks with a few keyframes (3-4) from a single demonstration. Despite being solely trained in a simulation, our framework demonstrates remarkable generalization capabilities. It efficiently adapts to a broad spectrum of real-world conditions, including various shelf widths, fluctuating quantities of objects, and objects with diverse attributes such as sizes and shapes.
Abstract:Persons with visual impairments (PwVI) have difficulties understanding and navigating spaces around them. Current wayfinding technologies either focus solely on navigation or provide limited communication about the environment. Motivated by recent advances in visual-language grounding and semantic navigation, we propose DRAGON, a guiding robot powered by a dialogue system and the ability to associate the environment with natural language. By understanding the commands from the user, DRAGON is able to guide the user to the desired landmarks on the map, describe the environment, and answer questions from visual observations. Through effective utilization of dialogue, the robot can ground the user's free-form descriptions to landmarks in the environment, and give the user semantic information through spoken language. We conduct a user study with blindfolded participants in an everyday indoor environment. Our results demonstrate that DRAGON is able to communicate with the user smoothly, provide a good guiding experience, and connect users with their surrounding environment in an intuitive manner.
Abstract:People with visual impairments (PwVI) often have difficulties navigating through unfamiliar indoor environments. However, current wayfinding tools are fairly limited. In this short paper, we present our in-progress work on a wayfinding robot for PwVI. The robot takes an audio command from the user that specifies the intended destination. Then, the robot autonomously plans a path to navigate to the goal. We use sensors to estimate the real-time position of the user, which is fed to the planner to improve the safety and comfort of the user. In addition, the robot describes the surroundings to the user periodically to prevent disorientation and potential accidents. We demonstrate the feasibility of our design in a public indoor environment. Finally, we analyze the limitations of our current design, as well as our insights and future work. A demonstration video can be found at https://youtu.be/BS9r5bkIass.