Abstract:The language generation and reasoning capabilities of large language models (LLMs) have enabled conversational systems with impressive performance in a variety of tasks, from code generation, to composing essays, to passing STEM and legal exams, to a new paradigm for knowledge search. Besides those short-term use applications, LLMs are increasingly used to help with real-life goals or tasks that take a long time to complete, involving multiple sessions across days, weeks, months, or even years. Thus to enable conversational systems for long term interactions and tasks, we need language-based agents that can plan for long horizons. Traditionally, such capabilities were addressed by reinforcement learning agents with hierarchical planning capabilities. In this work, we explore a novel architecture where the LLM acts as the meta-controller deciding the agent's next macro-action, and tool use augmented LLM-based option policies execute the selected macro-action. We instantiate this framework for a specific set of macro-actions enabling adaptive planning for users' personal plans through conversation and follow-up questions collecting user feedback. We show how this paradigm can be applicable in scenarios ranging from tutoring for academic and non-academic tasks to conversational coaching for personal health plans.
Abstract:We present an end-to-end framework for generating synthetic users for evaluating interactive agents designed to encourage positive behavior changes, such as in health and lifestyle coaching. The synthetic users are grounded in health and lifestyle conditions, specifically sleep and diabetes management in this study, to ensure realistic interactions with the health coaching agent. Synthetic users are created in two stages: first, structured data are generated grounded in real-world health and lifestyle factors in addition to basic demographics and behavioral attributes; second, full profiles of the synthetic users are developed conditioned on the structured data. Interactions between synthetic users and the coaching agent are simulated using generative agent-based models such as Concordia, or directly by prompting a language model. Using two independently-developed agents for sleep and diabetes coaching as case studies, the validity of this framework is demonstrated by analyzing the coaching agent's understanding of the synthetic users' needs and challenges. Finally, through multiple blinded evaluations of user-coach interactions by human experts, we demonstrate that our synthetic users with health and behavioral attributes more accurately portray real human users with the same attributes, compared to generic synthetic users not grounded in such attributes. The proposed framework lays the foundation for efficient development of conversational agents through extensive, realistic, and grounded simulated interactions.
Abstract:Online Knowledge Repositories (OKRs) like Wikipedia offer communities a way to share and preserve information about themselves and their ways of living. However, for communities with low-resourced languages -- including most African communities -- the quality and volume of content available are often inadequate. One reason for this lack of adequate content could be that many OKRs embody Western ways of knowledge preservation and sharing, requiring many low-resourced language communities to adapt to new interactions. To understand the challenges faced by low-resourced language contributors on the popular OKR Wikipedia, we conducted (1) a thematic analysis of Wikipedia forum discussions and (2) a contextual inquiry study with 14 novice contributors. We focused on three Ethiopian languages: Afan Oromo, Amharic, and Tigrinya. Our analysis revealed several recurring themes; for example, contributors struggle to find resources to corroborate their articles in low-resourced languages, and language technology support, like translation systems and spellcheck, result in several errors that waste contributors' time. We hope our study will support designers in making online knowledge repositories accessible to low-resourced language speakers.
Abstract:Despite recent advances in multimodal pre-training for visual description, state-of-the-art models still produce captions containing errors, such as hallucinating objects not present in a scene. The existing prominent metric for object hallucination, CHAIR, is limited to a fixed set of MS COCO objects and synonyms. In this work, we propose a modernized open-vocabulary metric, ALOHa, which leverages large language models (LLMs) to measure object hallucinations. Specifically, we use an LLM to extract groundable objects from a candidate caption, measure their semantic similarity to reference objects from captions and object detections, and use Hungarian matching to produce a final hallucination score. We show that ALOHa correctly identifies 13.6% more hallucinated objects than CHAIR on HAT, a new gold-standard subset of MS COCO Captions annotated for hallucinations, and 30.8% more on nocaps, where objects extend beyond MS COCO categories. Our code is available at https://davidmchan.github.io/aloha/.
Abstract:Current Large Language Models (LLMs) are not only limited to some maximum context length, but also are not able to robustly consume long inputs. To address these limitations, we propose ReadAgent, an LLM agent system that increases effective context length up to 20x in our experiments. Inspired by how humans interactively read long documents, we implement ReadAgent as a simple prompting system that uses the advanced language capabilities of LLMs to (1) decide what content to store together in a memory episode, (2) compress those memory episodes into short episodic memories called gist memories, and (3) take actions to look up passages in the original text if ReadAgent needs to remind itself of relevant details to complete a task. We evaluate ReadAgent against baselines using retrieval methods, using the original long contexts, and using the gist memories. These evaluations are performed on three long-document reading comprehension tasks: QuALITY, NarrativeQA, and QMSum. ReadAgent outperforms the baselines on all three tasks while extending the effective context window by 3-20x.
Abstract:Moral foundations theory (MFT) is a psychological assessment tool that decomposes human moral reasoning into five factors, including care/harm, liberty/oppression, and sanctity/degradation (Graham et al., 2009). People vary in the weight they place on these dimensions when making moral decisions, in part due to their cultural upbringing and political ideology. As large language models (LLMs) are trained on datasets collected from the internet, they may reflect the biases that are present in such corpora. This paper uses MFT as a lens to analyze whether popular LLMs have acquired a bias towards a particular set of moral values. We analyze known LLMs and find they exhibit particular moral foundations, and show how these relate to human moral foundations and political affiliations. We also measure the consistency of these biases, or whether they vary strongly depending on the context of how the model is prompted. Finally, we show that we can adversarially select prompts that encourage the moral to exhibit a particular set of moral foundations, and that this can affect the model's behavior on downstream tasks. These findings help illustrate the potential risks and unintended consequences of LLMs assuming a particular moral stance.
Abstract:The evaluation of machine-generated image captions poses an interesting yet persistent challenge. Effective evaluation measures must consider numerous dimensions of similarity, including semantic relevance, visual structure, object interactions, caption diversity, and specificity. Existing highly-engineered measures attempt to capture specific aspects, but fall short in providing a holistic score that aligns closely with human judgments. Here, we propose CLAIR, a novel method that leverages the zero-shot language modeling capabilities of large language models (LLMs) to evaluate candidate captions. In our evaluations, CLAIR demonstrates a stronger correlation with human judgments of caption quality compared to existing measures. Notably, on Flickr8K-Expert, CLAIR achieves relative correlation improvements over SPICE of 39.6% and over image-augmented methods such as RefCLIP-S of 18.3%. Moreover, CLAIR provides noisily interpretable results by allowing the language model to identify the underlying reasoning behind its assigned score. Code is available at https://davidmchan.github.io/clair/
Abstract:If you ask a human to describe an image, they might do so in a thousand different ways. Traditionally, image captioning models are trained to approximate the reference distribution of image captions, however, doing so encourages captions that are viewpoint-impoverished. Such captions often focus on only a subset of the possible details, while ignoring potentially useful information in the scene. In this work, we introduce a simple, yet novel, method: "Image Captioning by Committee Consensus" ($IC^3$), designed to generate a single caption that captures high-level details from several viewpoints. Notably, humans rate captions produced by $IC^3$ at least as helpful as baseline SOTA models more than two thirds of the time, and $IC^3$ captions can improve the performance of SOTA automated recall systems by up to 84%, indicating significant material improvements over existing SOTA approaches for visual description. Our code is publicly available at https://github.com/DavidMChan/caption-by-committee
Abstract:Traditional automated metrics for evaluating conditional natural language generation use pairwise comparisons between a single generated text and the best-matching gold-standard ground truth text. When multiple ground truths are available, scores are aggregated using an average or max operation across references. While this approach works well when diversity in the ground truth data (i.e. dispersion of the distribution of conditional texts) can be ascribed to noise, such as in automated speech recognition, it does not allow for robust evaluation in the case where diversity in the ground truths represents signal for the model. In this work we argue that existing metrics are not appropriate for domains such as visual description or summarization where ground truths are semantically diverse, and where the diversity in those captions captures useful additional information about the context. We propose a novel paradigm for multi-candidate evaluation of conditional language generation models, and a new family of metrics that compare the distributions of reference and model-generated caption sets using small sample sets of each. We demonstrate the utility of our approach with a case study in visual description: where we show that existing models optimize for single-description quality over diversity, and gain some insights into how sampling methods and temperature impact description quality and diversity.
Abstract:Generating representations of video data is of key importance in advancing the field of machine perception. Most current techniques rely on hand-annotated data, which can be difficult to work with, expensive to generate, and hard to scale. In this work, we propose a novel learning approach based on contrastive learning, LAVA, which is capable of learning joint language, audio, and video representations in a self-supervised manner. We pre-train LAVA on the Kinetics 700 dataset using transformer encoders to learn representations for each modality. We then demonstrate that LAVA performs competitively with the current state-of-the-art self-supervised and weakly-supervised pretraining techniques on UCF-101 and HMDB-51 video action recognition while using a fraction of the unlabeled data.