Abstract:The fast computation of large kernel sums is a challenging task, which arises as a subproblem in any kernel method. We approach the problem by slicing, which relies on random projections to one-dimensional subspaces and fast Fourier summation. We prove bounds for the slicing error and propose a quasi-Monte Carlo (QMC) approach for selecting the projections based on spherical quadrature rules. Numerical examples demonstrate that our QMC-slicing approach significantly outperforms existing methods like (QMC-)random Fourier features, orthogonal Fourier features or non-QMC slicing on standard test datasets.
Abstract:We give a comprehensive description of Wasserstein gradient flows of maximum mean discrepancy (MMD) functionals $\mathcal F_\nu := \text{MMD}_K^2(\cdot, \nu)$ towards given target measures $\nu$ on the real line, where we focus on the negative distance kernel $K(x,y) := -|x-y|$. In one dimension, the Wasserstein-2 space can be isometrically embedded into the cone $\mathcal C(0,1) \subset L_2(0,1)$ of quantile functions leading to a characterization of Wasserstein gradient flows via the solution of an associated Cauchy problem on $L_2(0,1)$. Based on the construction of an appropriate counterpart of $\mathcal F_\nu$ on $L_2(0,1)$ and its subdifferential, we provide a solution of the Cauchy problem. For discrete target measures $\nu$, this results in a piecewise linear solution formula. We prove invariance and smoothing properties of the flow on subsets of $\mathcal C(0,1)$. For certain $\mathcal F_\nu$-flows this implies that initial point measures instantly become absolutely continuous, and stay so over time. Finally, we illustrate the behavior of the flow by various numerical examples using an implicit Euler scheme and demonstrate differences to the explicit Euler scheme, which is easier to compute, but comes with limited convergence guarantees.
Abstract:In order to sample from an unnormalized probability density function, we propose to combine continuous normalizing flows (CNFs) with rejection-resampling steps based on importance weights. We relate the iterative training of CNFs with regularized velocity fields to a JKO scheme and prove convergence of the involved velocity fields to the velocity field of the Wasserstein gradient flow (WGF). The alternation of local flow steps and non-local rejection-resampling steps allows to overcome local minima or slow convergence of the WGF for multimodal distributions. Since the proposal of the rejection step is generated by the model itself, they do not suffer from common drawbacks of classical rejection schemes. The arising model can be trained iteratively, reduces the reverse Kulback-Leibler (KL) loss function in each step, allows to generate iid samples and moreover allows for evaluations of the generated underlying density. Numerical examples show that our method yields accurate results on various test distributions including high-dimensional multimodal targets and outperforms the state of the art in almost all cases significantly.
Abstract:Motivated by indirect measurements and applications from nanometrology with a mixed noise model, we develop a novel algorithm for jointly estimating the posterior and the noise parameters in Bayesian inverse problems. We propose to solve the problem by an expectation maximization (EM) algorithm. Based on the current noise parameters, we learn in the E-step a conditional normalizing flow that approximates the posterior. In the M-step, we propose to find the noise parameter updates again by an EM algorithm, which has analytical formulas. We compare the training of the conditional normalizing flow with the forward and reverse KL, and show that our model is able to incorporate information from many measurements, unlike previous approaches.
Abstract:Kernel-based methods are heavily used in machine learning. However, they suffer from $O(N^2)$ complexity in the number $N$ of considered data points. In this paper, we propose an approximation procedure, which reduces this complexity to $O(N)$. Our approach is based on two ideas. First, we prove that any radial kernel with analytic basis function can be represented as sliced version of some one-dimensional kernel and derive an analytic formula for the one-dimensional counterpart. It turns out that the relation between one- and $d$-dimensional kernels is given by a generalized Riemann-Liouville fractional integral. Hence, we can reduce the $d$-dimensional kernel summation to a one-dimensional setting. Second, for solving these one-dimensional problems efficiently, we apply fast Fourier summations on non-equispaced data, a sorting algorithm or a combination of both. Due to its practical importance we pay special attention to the Gaussian kernel, where we show a dimension-independent error bound and represent its one-dimensional counterpart via a closed-form Fourier transform. We provide a run time comparison and error estimate of our fast kernel summations.
Abstract:The solution of inverse problems is of fundamental interest in medical and astronomical imaging, geophysics as well as engineering and life sciences. Recent advances were made by using methods from machine learning, in particular deep neural networks. Most of these methods require a huge amount of (paired) data and computer capacity to train the networks, which often may not be available. Our paper addresses the issue of learning from small data sets by taking patches of very few images into account. We focus on the combination of model-based and data-driven methods by approximating just the image prior, also known as regularizer in the variational model. We review two methodically different approaches, namely optimizing the maximum log-likelihood of the patch distribution, and penalizing Wasserstein-like discrepancies of whole empirical patch distributions. From the point of view of Bayesian inverse problems, we show how we can achieve uncertainty quantification by approximating the posterior using Langevin Monte Carlo methods. We demonstrate the power of the methods in computed tomography, image super-resolution, and inpainting. Indeed, the approach provides also high-quality results in zero-shot super-resolution, where only a low-resolution image is available. The paper is accompanied by a GitHub repository containing implementations of all methods as well as data examples so that the reader can get their own insight into the performance.
Abstract:We propose conditional flows of the maximum mean discrepancy (MMD) with the negative distance kernel for posterior sampling and conditional generative modeling. This MMD, which is also known as energy distance, has several advantageous properties like efficient computation via slicing and sorting. We approximate the joint distribution of the ground truth and the observations using discrete Wasserstein gradient flows and establish an error bound for the posterior distributions. Further, we prove that our particle flow is indeed a Wasserstein gradient flow of an appropriate functional. The power of our method is demonstrated by numerical examples including conditional image generation and inverse problems like superresolution, inpainting and computed tomography in low-dose and limited-angle settings.
Abstract:Maximum mean discrepancy (MMD) flows suffer from high computational costs in large scale computations. In this paper, we show that MMD flows with Riesz kernels $K(x,y) = - \|x-y\|^r$, $r \in (0,2)$ have exceptional properties which allow for their efficient computation. First, the MMD of Riesz kernels coincides with the MMD of their sliced version. As a consequence, the computation of gradients of MMDs can be performed in the one-dimensional setting. Here, for $r=1$, a simple sorting algorithm can be applied to reduce the complexity from $O(MN+N^2)$ to $O((M+N)\log(M+N))$ for two empirical measures with $M$ and $N$ support points. For the implementations we approximate the gradient of the sliced MMD by using only a finite number $P$ of slices. We show that the resulting error has complexity $O(\sqrt{d/P})$, where $d$ is the data dimension. These results enable us to train generative models by approximating MMD gradient flows by neural networks even for large scale applications. We demonstrate the efficiency of our model by image generation on MNIST, FashionMNIST and CIFAR10.
Abstract:Representing a manifold of very high-dimensional data with generative models has been shown to be computationally efficient in practice. However, this requires that the data manifold admits a global parameterization. In order to represent manifolds of arbitrary topology, we propose to learn a mixture model of variational autoencoders. Here, every encoder-decoder pair represents one chart of a manifold. We propose a loss function for maximum likelihood estimation of the model weights and choose an architecture that provides us the analytical expression of the charts and of their inverses. Once the manifold is learned, we use it for solving inverse problems by minimizing a data fidelity term restricted to the learned manifold. To solve the arising minimization problem we propose a Riemannian gradient descent algorithm on the learned manifold. We demonstrate the performance of our method for low-dimensional toy examples as well as for deblurring and electrical impedance tomography on certain image manifolds.
Abstract:Wasserstein gradient flows of maximum mean discrepancy (MMD) functionals with non-smooth Riesz kernels show a rich structure as singular measures can become absolutely continuous ones and conversely. In this paper we contribute to the understanding of such flows. We propose to approximate the backward scheme of Jordan, Kinderlehrer and Otto for computing such Wasserstein gradient flows as well as a forward scheme for so-called Wasserstein steepest descent flows by neural networks (NNs). Since we cannot restrict ourselves to absolutely continuous measures, we have to deal with transport plans and velocity plans instead of usual transport maps and velocity fields. Indeed, we approximate the disintegration of both plans by generative NNs which are learned with respect to appropriate loss functions. In order to evaluate the quality of both neural schemes, we benchmark them on the interaction energy. Here we provide analytic formulas for Wasserstein schemes starting at a Dirac measure and show their convergence as the time step size tends to zero. Finally, we illustrate our neural MMD flows by numerical examples.