Abstract:Food portion estimation is crucial for monitoring health and tracking dietary intake. Image-based dietary assessment, which involves analyzing eating occasion images using computer vision techniques, is increasingly replacing traditional methods such as 24-hour recalls. However, accurately estimating the nutritional content from images remains challenging due to the loss of 3D information when projecting to the 2D image plane. Existing portion estimation methods are challenging to deploy in real-world scenarios due to their reliance on specific requirements, such as physical reference objects, high-quality depth information, or multi-view images and videos. In this paper, we introduce MFP3D, a new framework for accurate food portion estimation using only a single monocular image. Specifically, MFP3D consists of three key modules: (1) a 3D Reconstruction Module that generates a 3D point cloud representation of the food from the 2D image, (2) a Feature Extraction Module that extracts and concatenates features from both the 3D point cloud and the 2D RGB image, and (3) a Portion Regression Module that employs a deep regression model to estimate the food's volume and energy content based on the extracted features. Our MFP3D is evaluated on MetaFood3D dataset, demonstrating its significant improvement in accurate portion estimation over existing methods.
Abstract:Food computing is both important and challenging in computer vision (CV). It significantly contributes to the development of CV algorithms due to its frequent presence in datasets across various applications, ranging from classification and instance segmentation to 3D reconstruction. The polymorphic shapes and textures of food, coupled with high variation in forms and vast multimodal information, including language descriptions and nutritional data, make food computing a complex and demanding task for modern CV algorithms. 3D food modeling is a new frontier for addressing food-related problems, due to its inherent capability to deal with random camera views and its straightforward representation for calculating food portion size. However, the primary hurdle in the development of algorithms for food object analysis is the lack of nutrition values in existing 3D datasets. Moreover, in the broader field of 3D research, there is a critical need for domain-specific test datasets. To bridge the gap between general 3D vision and food computing research, we propose MetaFood3D. This dataset consists of 637 meticulously labeled 3D food objects across 108 categories, featuring detailed nutrition information, weight, and food codes linked to a comprehensive nutrition database. The dataset emphasizes intra-class diversity and includes rich modalities such as textured mesh files, RGB-D videos, and segmentation masks. Experimental results demonstrate our dataset's significant potential for improving algorithm performance, highlight the challenging gap between video captures and 3D scanned data, and show the strength of the MetaFood3D dataset in high-quality data generation, simulation, and augmentation.
Abstract:Food image classification is the fundamental step in image-based dietary assessment, which aims to estimate participants' nutrient intake from eating occasion images. A common challenge of food images is the intra-class diversity and inter-class similarity, which can significantly hinder classification performance. To address this issue, we introduce a novel multi-modal contrastive learning framework called FMiFood, which learns more discriminative features by integrating additional contextual information, such as food category text descriptions, to enhance classification accuracy. Specifically, we propose a flexible matching technique that improves the similarity matching between text and image embeddings to focus on multiple key information. Furthermore, we incorporate the classification objectives into the framework and explore the use of GPT-4 to enrich the text descriptions and provide more detailed context. Our method demonstrates improved performance on both the UPMC-101 and VFN datasets compared to existing methods.
Abstract:The increasing interest in computer vision applications for nutrition and dietary monitoring has led to the development of advanced 3D reconstruction techniques for food items. However, the scarcity of high-quality data and limited collaboration between industry and academia have constrained progress in this field. Building on recent advancements in 3D reconstruction, we host the MetaFood Workshop and its challenge for Physically Informed 3D Food Reconstruction. This challenge focuses on reconstructing volume-accurate 3D models of food items from 2D images, using a visible checkerboard as a size reference. Participants were tasked with reconstructing 3D models for 20 selected food items of varying difficulty levels: easy, medium, and hard. The easy level provides 200 images, the medium level provides 30 images, and the hard level provides only 1 image for reconstruction. In total, 16 teams submitted results in the final testing phase. The solutions developed in this challenge achieved promising results in 3D food reconstruction, with significant potential for improving portion estimation for dietary assessment and nutritional monitoring. More details about this workshop challenge and access to the dataset can be found at https://sites.google.com/view/cvpr-metafood-2024.
Abstract:Detecting an ingestion environment is an important aspect of monitoring dietary intake. It provides insightful information for dietary assessment. However, it is a challenging problem where human-based reviewing can be tedious, and algorithm-based review suffers from data imbalance and perceptual aliasing problems. To address these issues, we propose a neural network-based method with a two-stage training framework that tactfully combines fine-tuning and transfer learning techniques. Our method is evaluated on a newly collected dataset called ``UA Free Living Study", which uses an egocentric wearable camera, AIM-2 sensor, to simulate food consumption in free-living conditions. The proposed training framework is applied to common neural network backbones, combined with approaches in the general imbalanced classification field. Experimental results on the collected dataset show that our proposed method for automatic ingestion environment recognition successfully addresses the challenging data imbalance problem in the dataset and achieves a promising overall classification accuracy of 96.63%.
Abstract:Image-based methods to analyze food images have alleviated the user burden and biases associated with traditional methods. However, accurate portion estimation remains a major challenge due to the loss of 3D information in the 2D representation of foods captured by smartphone cameras or wearable devices. In this paper, we propose a new framework to estimate both food volume and energy from 2D images by leveraging the power of 3D food models and physical reference in the eating scene. Our method estimates the pose of the camera and the food object in the input image and recreates the eating occasion by rendering an image of a 3D model of the food with the estimated poses. We also introduce a new dataset, SimpleFood45, which contains 2D images of 45 food items and associated annotations including food volume, weight, and energy. Our method achieves an average error of 31.10 kCal (17.67%) on this dataset, outperforming existing portion estimation methods.
Abstract:Food image classification systems play a crucial role in health monitoring and diet tracking through image-based dietary assessment techniques. However, existing food recognition systems rely on static datasets characterized by a pre-defined fixed number of food classes. This contrasts drastically with the reality of food consumption, which features constantly changing data. Therefore, food image classification systems should adapt to and manage data that continuously evolves. This is where continual learning plays an important role. A challenge in continual learning is catastrophic forgetting, where ML models tend to discard old knowledge upon learning new information. While memory-replay algorithms have shown promise in mitigating this problem by storing old data as exemplars, they are hampered by the limited capacity of memory buffers, leading to an imbalance between new and previously learned data. To address this, our work explores the use of neural image compression to extend buffer size and enhance data diversity. We introduced the concept of continuously learning a neural compression model to adaptively improve the quality of compressed data and optimize the bitrates per pixel (bpp) to store more exemplars. Our extensive experiments, including evaluations on food-specific datasets including Food-101 and VFN-74, as well as the general dataset ImageNet-100, demonstrate improvements in classification accuracy. This progress is pivotal in advancing more realistic food recognition systems that are capable of adapting to continually evolving data. Moreover, the principles and methodologies we've developed hold promise for broader applications, extending their benefits to other domains of continual machine learning systems.
Abstract:A significant challenge in achieving ubiquitous Artificial Intelligence is the limited ability of models to rapidly learn new information in real-world scenarios where data follows long-tailed distributions, all while avoiding forgetting previously acquired knowledge. In this work, we study the under-explored problem of Long-Tailed Online Continual Learning (LTOCL), which aims to learn new tasks from sequentially arriving class-imbalanced data streams. Each data is observed only once for training without knowing the task data distribution. We present DELTA, a decoupled learning approach designed to enhance learning representations and address the substantial imbalance in LTOCL. We enhance the learning process by adapting supervised contrastive learning to attract similar samples and repel dissimilar (out-of-class) samples. Further, by balancing gradients during training using an equalization loss, DELTA significantly enhances learning outcomes and successfully mitigates catastrophic forgetting. Through extensive evaluation, we demonstrate that DELTA improves the capacity for incremental learning, surpassing existing OCL methods. Our results suggest considerable promise for applying OCL in real-world applications.
Abstract:Accurate identification and localization of anatomical structures of varying size and appearance in laparoscopic imaging are necessary to leverage the potential of computer vision techniques for surgical decision support. Segmentation performance of such models is traditionally reported using metrics of overlap such as IoU. However, imbalanced and unrealistic representation of classes in the training data and suboptimal selection of reported metrics have the potential to skew nominal segmentation performance and thereby ultimately limit clinical translation. In this work, we systematically analyze the impact of class characteristics (i.e., organ size differences), training and test data composition (i.e., representation of positive and negative examples), and modeling parameters (i.e., foreground-to-background class weight) on eight segmentation metrics: accuracy, precision, recall, IoU, F1 score, specificity, Hausdorff Distance, and Average Symmetric Surface Distance. Based on our findings, we propose two simple yet effective strategies to improve real-world applicability of image segmentation models in laparoscopic surgical data: (1) inclusion of negative examples in the training process and (2) adaptation of foreground-background weights in segmentation models to maximize model performance with respect to specific metrics of interest, depending on the clinical use case.
Abstract:Image compression emerges as a pivotal tool in the efficient handling and transmission of digital images. Its ability to substantially reduce file size not only facilitates enhanced data storage capacity but also potentially brings advantages to the development of continual machine learning (ML) systems, which learn new knowledge incrementally from sequential data. Continual ML systems often rely on storing representative samples, also known as exemplars, within a limited memory constraint to maintain the performance on previously learned data. These methods are known as memory replay-based algorithms and have proven effective at mitigating the detrimental effects of catastrophic forgetting. Nonetheless, the limited memory buffer size often falls short of adequately representing the entire data distribution. In this paper, we explore the use of image compression as a strategy to enhance the buffer's capacity, thereby increasing exemplar diversity. However, directly using compressed exemplars introduces domain shift during continual ML, marked by a discrepancy between compressed training data and uncompressed testing data. Additionally, it is essential to determine the appropriate compression algorithm and select the most effective rate for continual ML systems to balance the trade-off between exemplar quality and quantity. To this end, we introduce a new framework to incorporate image compression for continual ML including a pre-processing data compression step and an efficient compression rate/algorithm selection method. We conduct extensive experiments on CIFAR-100 and ImageNet datasets and show that our method significantly improves image classification accuracy in continual ML settings.