Abstract:Food image classification is the fundamental step in image-based dietary assessment, which aims to estimate participants' nutrient intake from eating occasion images. A common challenge of food images is the intra-class diversity and inter-class similarity, which can significantly hinder classification performance. To address this issue, we introduce a novel multi-modal contrastive learning framework called FMiFood, which learns more discriminative features by integrating additional contextual information, such as food category text descriptions, to enhance classification accuracy. Specifically, we propose a flexible matching technique that improves the similarity matching between text and image embeddings to focus on multiple key information. Furthermore, we incorporate the classification objectives into the framework and explore the use of GPT-4 to enrich the text descriptions and provide more detailed context. Our method demonstrates improved performance on both the UPMC-101 and VFN datasets compared to existing methods.
Abstract:Food image classification is a fundamental step of image-based dietary assessment, enabling automated nutrient analysis from food images. Many current methods employ deep neural networks to train on generic food image datasets that do not reflect the dynamism of real-life food consumption patterns, in which food images appear sequentially over time, reflecting the progression of what an individual consumes. Personalized food classification aims to address this problem by training a deep neural network using food images that reflect the consumption pattern of each individual. However, this problem is under-explored and there is a lack of benchmark datasets with individualized food consumption patterns due to the difficulty in data collection. In this work, we first introduce two benchmark personalized datasets including the Food101-Personal, which is created based on surveys of daily dietary patterns from participants in the real world, and the VFNPersonal, which is developed based on a dietary study. In addition, we propose a new framework for personalized food image classification by leveraging self-supervised learning and temporal image feature information. Our method is evaluated on both benchmark datasets and shows improved performance compared to existing works. The dataset has been made available at: https://skynet.ecn.purdue.edu/~pan161/dataset_personal.html
Abstract:Food image classification serves as a fundamental and critical step in image-based dietary assessment, facilitating nutrient intake analysis from captured food images. However, existing works in food classification predominantly focuses on predicting 'food types', which do not contain direct nutritional composition information. This limitation arises from the inherent discrepancies in nutrition databases, which are tasked with associating each 'food item' with its respective information. Therefore, in this work we aim to classify food items to align with nutrition database. To this end, we first introduce VFN-nutrient dataset by annotating each food image in VFN with a food item that includes nutritional composition information. Such annotation of food items, being more discriminative than food types, creates a hierarchical structure within the dataset. However, since the food item annotations are solely based on nutritional composition information, they do not always show visual relations with each other, which poses significant challenges when applying deep learning-based techniques for classification. To address this issue, we then propose a multi-stage hierarchical framework for food item classification by iteratively clustering and merging food items during the training process, which allows the deep model to extract image features that are discriminative across labels. Our method is evaluated on VFN-nutrient dataset and achieve promising results compared with existing work in terms of both food type and food item classification.
Abstract:Food image classification serves as the foundation of image-based dietary assessment to predict food categories. Since there are many different food classes in real life, conventional models cannot achieve sufficiently high accuracy. Personalized classifiers aim to largely improve the accuracy of food image classification for each individual. However, a lack of public personal food consumption data proves to be a challenge for training such models. To address this issue, we propose a novel framework to simulate personal food consumption data patterns, leveraging the use of a modified Markov chain model and self-supervised learning. Our method is capable of creating an accurate future data pattern from a limited amount of initial data, and our simulated data patterns can be closely correlated with the initial data pattern. Furthermore, we use Dynamic Time Warping distance and Kullback-Leibler divergence as metrics to evaluate the effectiveness of our method on the public Food-101 dataset. Our experimental results demonstrate promising performance compared with random simulation and the original Markov chain method.