Abstract:3D perception plays a crucial role in real-world applications such as autonomous driving, robotics, and AR/VR. In practical scenarios, 3D perception models must continuously adapt to new data and emerging object categories, but retraining from scratch incurs prohibitive costs. Therefore, adopting class-incremental learning (CIL) becomes particularly essential. However, real-world 3D point cloud data often include corrupted samples, which poses significant challenges for existing CIL methods and leads to more severe forgetting on corrupted data. To address these challenges, we consider the scenario in which a CIL model can be updated using point clouds with unknown corruption to better simulate real-world conditions. Inspired by Farthest Point Sampling, we propose a novel exemplar selection strategy that effectively preserves intra-class diversity when selecting replay exemplars, mitigating forgetting induced by data corruption. Furthermore, we introduce a point cloud downsampling-based replay method to utilize the limited replay buffer memory more efficiently, thereby further enhancing the model's continual learning ability. Extensive experiments demonstrate that our method improves the performance of replay-based CIL baselines by 2% to 11%, proving its effectiveness and promising potential for real-world 3D applications.
Abstract:Learned image compression (LIC) using deep learning architectures has seen significant advancements, yet standard rate-distortion (R-D) optimization often encounters imbalanced updates due to diverse gradients of the rate and distortion objectives. This imbalance can lead to suboptimal optimization, where one objective dominates, thereby reducing overall compression efficiency. To address this challenge, we reformulate R-D optimization as a multi-objective optimization (MOO) problem and introduce two balanced R-D optimization strategies that adaptively adjust gradient updates to achieve more equitable improvements in both rate and distortion. The first proposed strategy utilizes a coarse-to-fine gradient descent approach along standard R-D optimization trajectories, making it particularly suitable for training LIC models from scratch. The second proposed strategy analytically addresses the reformulated optimization as a quadratic programming problem with an equality constraint, which is ideal for fine-tuning existing models. Experimental results demonstrate that both proposed methods enhance the R-D performance of LIC models, achieving around a 2\% BD-Rate reduction with acceptable additional training cost, leading to a more balanced and efficient optimization process. The code will be made publicly available.
Abstract:Food portion estimation is crucial for monitoring health and tracking dietary intake. Image-based dietary assessment, which involves analyzing eating occasion images using computer vision techniques, is increasingly replacing traditional methods such as 24-hour recalls. However, accurately estimating the nutritional content from images remains challenging due to the loss of 3D information when projecting to the 2D image plane. Existing portion estimation methods are challenging to deploy in real-world scenarios due to their reliance on specific requirements, such as physical reference objects, high-quality depth information, or multi-view images and videos. In this paper, we introduce MFP3D, a new framework for accurate food portion estimation using only a single monocular image. Specifically, MFP3D consists of three key modules: (1) a 3D Reconstruction Module that generates a 3D point cloud representation of the food from the 2D image, (2) a Feature Extraction Module that extracts and concatenates features from both the 3D point cloud and the 2D RGB image, and (3) a Portion Regression Module that employs a deep regression model to estimate the food's volume and energy content based on the extracted features. Our MFP3D is evaluated on MetaFood3D dataset, demonstrating its significant improvement in accurate portion estimation over existing methods.
Abstract:The enhanced Deep Hierarchical Video Compression-DHVC 2.0-has been introduced. This single-model neural video codec operates across a broad range of bitrates, delivering not only superior compression performance to representative methods but also impressive complexity efficiency, enabling real-time processing with a significantly smaller memory footprint on standard GPUs. These remarkable advancements stem from the use of hierarchical predictive coding. Each video frame is uniformly transformed into multiscale representations through hierarchical variational autoencoders. For a specific scale's feature representation of a frame, its corresponding latent residual variables are generated by referencing lower-scale spatial features from the same frame and then conditionally entropy-encoded using a probabilistic model whose parameters are predicted using same-scale temporal reference from previous frames and lower-scale spatial reference of the current frame. This feature-space processing operates from the lowest to the highest scale of each frame, completely eliminating the need for the complexity-intensive motion estimation and compensation techniques that have been standard in video codecs for decades. The hierarchical approach facilitates parallel processing, accelerating both encoding and decoding, and supports transmission-friendly progressive decoding, making it particularly advantageous for networked video applications in the presence of packet loss. Source codes will be made available.
Abstract:This paper is directed towards the food crystal quality control area for manufacturing, focusing on efficiently predicting food crystal counts and size distributions. Previously, manufacturers used the manual counting method on microscopic images of food liquid products, which requires substantial human effort and suffers from inconsistency issues. Food crystal segmentation is a challenging problem due to the diverse shapes of crystals and their surrounding hard mimics. To address this challenge, we propose an efficient instance segmentation method based on object detection. Experimental results show that the predicted crystal counting accuracy of our method is comparable with existing segmentation methods, while being five times faster. Based on our experiments, we also define objective criteria for separating hard mimics and food crystals, which could benefit manual annotation tasks on similar dataset.
Abstract:Food computing is both important and challenging in computer vision (CV). It significantly contributes to the development of CV algorithms due to its frequent presence in datasets across various applications, ranging from classification and instance segmentation to 3D reconstruction. The polymorphic shapes and textures of food, coupled with high variation in forms and vast multimodal information, including language descriptions and nutritional data, make food computing a complex and demanding task for modern CV algorithms. 3D food modeling is a new frontier for addressing food-related problems, due to its inherent capability to deal with random camera views and its straightforward representation for calculating food portion size. However, the primary hurdle in the development of algorithms for food object analysis is the lack of nutrition values in existing 3D datasets. Moreover, in the broader field of 3D research, there is a critical need for domain-specific test datasets. To bridge the gap between general 3D vision and food computing research, we propose MetaFood3D. This dataset consists of 637 meticulously labeled 3D food objects across 108 categories, featuring detailed nutrition information, weight, and food codes linked to a comprehensive nutrition database. The dataset emphasizes intra-class diversity and includes rich modalities such as textured mesh files, RGB-D videos, and segmentation masks. Experimental results demonstrate our dataset's significant potential for improving algorithm performance, highlight the challenging gap between video captures and 3D scanned data, and show the strength of the MetaFood3D dataset in high-quality data generation, simulation, and augmentation.
Abstract:Food image classification is the fundamental step in image-based dietary assessment, which aims to estimate participants' nutrient intake from eating occasion images. A common challenge of food images is the intra-class diversity and inter-class similarity, which can significantly hinder classification performance. To address this issue, we introduce a novel multi-modal contrastive learning framework called FMiFood, which learns more discriminative features by integrating additional contextual information, such as food category text descriptions, to enhance classification accuracy. Specifically, we propose a flexible matching technique that improves the similarity matching between text and image embeddings to focus on multiple key information. Furthermore, we incorporate the classification objectives into the framework and explore the use of GPT-4 to enrich the text descriptions and provide more detailed context. Our method demonstrates improved performance on both the UPMC-101 and VFN datasets compared to existing methods.
Abstract:The increasing interest in computer vision applications for nutrition and dietary monitoring has led to the development of advanced 3D reconstruction techniques for food items. However, the scarcity of high-quality data and limited collaboration between industry and academia have constrained progress in this field. Building on recent advancements in 3D reconstruction, we host the MetaFood Workshop and its challenge for Physically Informed 3D Food Reconstruction. This challenge focuses on reconstructing volume-accurate 3D models of food items from 2D images, using a visible checkerboard as a size reference. Participants were tasked with reconstructing 3D models for 20 selected food items of varying difficulty levels: easy, medium, and hard. The easy level provides 200 images, the medium level provides 30 images, and the hard level provides only 1 image for reconstruction. In total, 16 teams submitted results in the final testing phase. The solutions developed in this challenge achieved promising results in 3D food reconstruction, with significant potential for improving portion estimation for dietary assessment and nutritional monitoring. More details about this workshop challenge and access to the dataset can be found at https://sites.google.com/view/cvpr-metafood-2024.
Abstract:Recent advances in learning-based image compression typically come at the cost of high complexity. Designing computationally efficient architectures remains an open challenge. In this paper, we empirically investigate the impact of different network designs in terms of rate-distortion performance and computational complexity. Our experiments involve testing various transforms, including convolutional neural networks and transformers, as well as various context models, including hierarchical, channel-wise, and space-channel context models. Based on the results, we present a series of efficient models, the final model of which has comparable performance to recent best-performing methods but with significantly lower complexity. Extensive experiments provide insights into the design of architectures for learned image compression and potential direction for future research. The code is available at \url{https://gitlab.com/viper-purdue/efficient-compression}.
Abstract:Image-based methods to analyze food images have alleviated the user burden and biases associated with traditional methods. However, accurate portion estimation remains a major challenge due to the loss of 3D information in the 2D representation of foods captured by smartphone cameras or wearable devices. In this paper, we propose a new framework to estimate both food volume and energy from 2D images by leveraging the power of 3D food models and physical reference in the eating scene. Our method estimates the pose of the camera and the food object in the input image and recreates the eating occasion by rendering an image of a 3D model of the food with the estimated poses. We also introduce a new dataset, SimpleFood45, which contains 2D images of 45 food items and associated annotations including food volume, weight, and energy. Our method achieves an average error of 31.10 kCal (17.67%) on this dataset, outperforming existing portion estimation methods.