Abstract:Modern Vision-Language Models (VLMs) exhibit a critical flaw in compositional reasoning, often confusing "a red cube and a blue sphere" with "a blue cube and a red sphere". Disentangling the visual and linguistic roots of these failures is a fundamental challenge for robust evaluation. To enable fine-grained, controllable analysis, we introduce Auto-Comp, a fully automated and synthetic pipeline for generating scalable benchmarks. Its controllable nature is key to dissecting and isolating different reasoning skills. Auto-Comp generates paired images from Minimal (e.g., "a monitor to the left of a bicycle on a white background") and LLM-generated Contextual captions (e.g., "In a brightly lit photography studio, a monitor is positioned to the left of a bicycle"), allowing a controlled A/B test to disentangle core binding ability from visio-linguistic complexity. Our evaluation of 20 VLMs on novel benchmarks for color binding and spatial relations reveals universal compositional failures in both CLIP and SigLIP model families. Crucially, our novel "Confusion Benchmark" reveals a deeper flaw beyond simple attribute swaps: models are highly susceptible to low-entropy distractors (e.g., repeated objects or colors), demonstrating their compositional failures extend beyond known bag-of-words limitations. we uncover a surprising trade-off: visio-linguistic context, which provides global scene cues, aids spatial reasoning but simultaneously hinders local attribute binding by introducing visual clutter. We release the Auto-Comp pipeline to facilitate future benchmark creation, alongside all our generated benchmarks (https://huggingface.co/AutoComp).
Abstract:Synthetic data offers a scalable solution for vision-language pre-training, yet current state-of-the-art methods typically rely on scaling up a single generative backbone, which introduces generator-specific spectral biases and limits feature diversity. In this work, we introduce PolyGen, a framework that redefines synthetic data construction by prioritizing manifold coverage and compositional rigor over simple dataset size. PolyGen employs a Polylithic approach to train on the intersection of architecturally distinct generators, effectively marginalizing out model-specific artifacts. Additionally, we introduce a Programmatic Hard Negative curriculum that enforces fine-grained syntactic understanding. By structurally reallocating the same data budget from unique captions to multi-source variations, PolyGen achieves a more robust feature space, outperforming the leading single-source baseline (SynthCLIP) by +19.0% on aggregate multi-task benchmarks and on the SugarCrepe++ compositionality benchmark (+9.1%). These results demonstrate that structural diversity is a more data-efficient scaling law than simply increasing the volume of single-source samples.
Abstract:Language models are increasingly used for social robot navigation, yet existing benchmarks largely overlook principled prompt design for socially compliant behavior. This limitation is particularly relevant in practice, as many systems rely on small vision language models (VLMs) for efficiency. Compared to large language models, small VLMs exhibit weaker decision-making capabilities, making effective prompt design critical for accurate navigation. Inspired by cognitive theories of human learning and motivation, we study prompt design along two dimensions: system guidance (action-focused, reasoning-oriented, and perception-reasoning prompts) and motivational framing, where models compete against humans, other AI systems, or their past selves. Experiments on two socially compliant navigation datasets reveal three key findings. First, for non-finetuned GPT-4o, competition against humans achieves the best performance, while competition against other AI systems performs worst. For finetuned models, competition against the model's past self yields the strongest results, followed by competition against humans, with performance further influenced by coupling effects among prompt design, model choice, and dataset characteristics. Second, inappropriate system prompt design can significantly degrade performance, even compared to direct finetuning. Third, while direct finetuning substantially improves semantic-level metrics such as perception, prediction, and reasoning, it yields limited gains in action accuracy. In contrast, our system prompts produce a disproportionately larger improvement in action accuracy, indicating that the proposed prompt design primarily acts as a decision-level constraint rather than a representational enhancement.
Abstract:Autoregressive (AR) visual generators model images as sequences of discrete tokens and are trained with next token likelihood. This strict causality supervision optimizes each step only by its immediate next token, which diminishes global coherence and slows convergence. We ask whether foresight, training signals that originate from later tokens, can help AR visual generation. We conduct a series of controlled diagnostics along the injection level, foresight layout, and foresight source axes, unveiling a key insight: aligning foresight to AR models' internal representation on the 2D image grids improves causality modeling. We formulate this insight with Mirai (meaning "future" in Japanese), a general framework that injects future information into AR training with no architecture change and no extra inference overhead: Mirai-E uses explicit foresight from multiple future positions of unidirectional representations, whereas Mirai-I leverages implicit foresight from matched bidirectional representations. Extensive experiments show that Mirai significantly accelerates convergence and improves generation quality. For instance, Mirai can speed up LlamaGen-B's convergence by up to 10$\times$ and reduce the generation FID from 5.34 to 4.34 on the ImageNet class-condition image generation benchmark. Our study highlights that visual autoregressive models need foresight.
Abstract:Detecting unknown deepfake manipulations remains one of the most challenging problems in face forgery detection. Current state-of-the-art approaches fail to generalize to unseen manipulations, as they primarily rely on supervised training with existing deepfakes or pseudo-fakes, which leads to overfitting to specific forgery patterns. In contrast, self-supervised methods offer greater potential for generalization, but existing work struggles to learn discriminative representations only from self-supervision. In this paper, we propose ExposeAnyone, a fully self-supervised approach based on a diffusion model that generates expression sequences from audio. The key idea is, once the model is personalized to specific subjects using reference sets, it can compute the identity distances between suspected videos and personalized subjects via diffusion reconstruction errors, enabling person-of-interest face forgery detection. Extensive experiments demonstrate that 1) our method outperforms the previous state-of-the-art method by 4.22 percentage points in the average AUC on DF-TIMIT, DFDCP, KoDF, and IDForge datasets, 2) our model is also capable of detecting Sora2-generated videos, where the previous approaches perform poorly, and 3) our method is highly robust to corruptions such as blur and compression, highlighting the applicability in real-world face forgery detection.
Abstract:Recent text-to-image models, such as Stable Diffusion, have achieved impressive visual quality, yet they often suffer from geometric inconsistencies that undermine the structural realism of generated scenes. One prominent issue is vanishing point inconsistency, where projections of parallel lines fail to converge correctly in 2D space. This leads to structurally implausible geometry that degrades spatial realism, especially in architectural scenes. We propose ControlVP, a user-guided framework for correcting vanishing point inconsistencies in generated images. Our approach extends a pre-trained diffusion model by incorporating structural guidance derived from building contours. We also introduce geometric constraints that explicitly encourage alignment between image edges and perspective cues. Our method enhances global geometric consistency while maintaining visual fidelity comparable to the baselines. This capability is particularly valuable for applications that require accurate spatial structure, such as image-to-3D reconstruction. The dataset and source code are available at https://github.com/RyotaOkumura/ControlVP .
Abstract:In this paper, we present a deepfake detection algorithm specifically designed for electronic Know Your Customer (eKYC) systems. To ensure the reliability of eKYC systems against deepfake attacks, it is essential to develop a robust deepfake detector capable of identifying both face swapping and face reenactment, while also being robust to image degradation. We address these challenges through three key contributions: (1)~Our approach evaluates the video's authenticity by detecting temporal inconsistencies in identity vectors extracted by face recognition models, leading to comprehensive detection of both face swapping and face reenactment. (2)~In addition to processing video input, the algorithm utilizes a registered image (assumed to be genuine) to calculate identity discrepancies between the input video and the registered image, significantly improving detection accuracy. (3)~We find that employing a face feature extractor trained on a larger dataset enhances both detection performance and robustness against image degradation. Our experimental results show that our proposed method accurately detects both face swapping and face reenactment comprehensively and is robust against various forms of unseen image degradation. Our source code is publicly available https://github.com/TaikiMiyagawa/DeepfakeDetection4eKYC.
Abstract:Although adversarial training is known to be effective against adversarial examples, training dynamics are not well understood. In this study, we present the first theoretical analysis of adversarial training in random deep neural networks without any assumptions on data distributions. We introduce a new theoretical framework based on mean field theory, which addresses the limitations of existing mean field-based approaches. Based on this framework, we derive (empirically tight) upper bounds of $\ell_q$ norm-based adversarial loss with $\ell_p$ norm-based adversarial examples for various values of $p$ and $q$. Moreover, we prove that networks without shortcuts are generally not adversarially trainable and that adversarial training reduces network capacity. We also show that network width alleviates these issues. Furthermore, we present the various impacts of the input and output dimensions on the upper bounds and time evolution of the weight variance.
Abstract:Adversarial training is one of the most effective adversarial defenses, but it incurs a high computational cost. In this study, we show that transformers adversarially pretrained on diverse tasks can serve as robust foundation models and eliminate the need for adversarial training in downstream tasks. Specifically, we theoretically demonstrate that through in-context learning, a single adversarially pretrained transformer can robustly generalize to multiple unseen tasks without any additional training, i.e., without any parameter updates. This robustness stems from the model's focus on robust features and its resistance to attacks that exploit non-predictive features. Besides these positive findings, we also identify several limitations. Under certain conditions (though unrealistic), no universally robust single-layer transformers exist. Moreover, robust transformers exhibit an accuracy--robustness trade-off and require a large number of in-context demonstrations. The code is available at https://github.com/s-kumano/universally-robust-in-context-learner.
Abstract:Generative agents offer promising capabilities for simulating realistic urban behaviors. However, existing methods oversimplify transportation choices in modern cities, and require prohibitive computational resources for large-scale population simulation. To address these limitations, we first present a virtual city that features multiple functional buildings and transportation modes. Then, we conduct extensive surveys to model behavioral choices and mobility preferences among population groups. Building on these insights, we introduce a simulation framework that captures the complexity of urban mobility while remaining scalable, enabling the simulation of over 4,000 agents. To assess the realism of the generated behaviors, we perform a series of micro and macro-level analyses. Beyond mere performance comparison, we explore insightful experiments, such as predicting crowd density from movement patterns and identifying trends in vehicle preferences across agent demographics.