Abstract:The prevalence of rapidly evolving slang, neologisms, and highly stylized expressions in informal user-generated text, particularly on Chinese social media, poses significant challenges for Machine Translation (MT) benchmarking. Specifically, we identify two primary obstacles: (1) data scarcity, as high-quality parallel data requires bilingual annotators familiar with platform-specific slang, and stylistic cues in both languages; and (2) metric limitations, where traditional evaluators like COMET often fail to capture stylistic fidelity and nonstandard expressions. To bridge these gaps, we introduce CSM-MTBench, a benchmark covering five Chinese-foreign language directions and consisting of two expert-curated subsets: Fun Posts, featuring context-rich, slang- and neologism-heavy content, and Social Snippets, emphasizing concise, emotion- and style- driven expressions. Furthermore, we propose tailored evaluation approaches for each subset: measuring the translation success rate of slang and neologisms in Fun Posts, while assessing tone and style preservation in Social Snippets via a hybrid of embedding-based metrics and LLM-as-a-judge. Experiments on over 20 models reveal substantial variation in how current MT systems handle semantic fidelity and informal, social-media-specific stylistic cues. CSM-MTBench thus serves as a rigorous testbed for advancing MT systems capable of mastering real-world Chinese social media texts.
Abstract:Neologism-aware machine translation aims to translate source sentences containing neologisms into target languages. This field remains underexplored compared with general machine translation (MT). In this paper, we propose an agentic framework, NeoAMT, for neologism-aware machine translation using a Wiktionary search tool. Specifically, we first create a new dataset for neologism-aware machine translation and develop a search tool based on Wiktionary. The new dataset covers 16 languages and 75 translation directions and is derived from approximately 10 million records of an English Wiktionary dump. The retrieval corpus of the search tool is also constructed from around 3 million cleaned records of the Wiktionary dump. We then use it for training the translation agent with reinforcement learning (RL) and evaluating the accuracy of neologism-aware machine translation. Based on this, we also propose an RL training framework that contains a novel reward design and an adaptive rollout generation approach by leveraging "translation difficulty" to further improve the translation quality of translation agents using our search tool.
Abstract:Multimodal sentence embedding models typically leverage image-caption pairs in addition to textual data during training. However, such pairs often contain noise, including redundant or irrelevant information on either the image or caption side. To mitigate this issue, we propose MCSEO, a method that enhances multimodal sentence embeddings by incorporating fine-grained object-phrase alignment alongside traditional image-caption alignment. Specifically, MCSEO utilizes existing segmentation and object detection models to extract accurate object-phrase pairs, which are then used to optimize a contrastive learning objective tailored to object-phrase correspondence. Experimental results on semantic textual similarity (STS) tasks across different backbone models demonstrate that MCSEO consistently outperforms strong baselines, highlighting the significance of precise object-phrase alignment in multimodal representation learning.
Abstract:Information retrieval is indispensable for today's Internet applications, yet traditional semantic matching techniques often fall short in capturing the fine-grained cross-modal interactions required for complex queries. Although late-fusion two-tower architectures attempt to bridge this gap by independently encoding visual and textual data before merging them at a high level, they frequently overlook the subtle interplay essential for comprehensive understanding. In this work, we rigorously assess these limitations and introduce a unified retrieval framework that fuses visual and textual cues from the ground up, enabling early cross-modal interactions for enhancing context interpretation. Through a two-stage training process--comprising post-training adaptation followed by instruction tuning--we adapt MLLMs as retrievers using a simple one-tower architecture. Our approach outperforms conventional methods across diverse retrieval scenarios, particularly when processing complex multi-modal inputs. Notably, the joint fusion encoder yields greater improvements on tasks that require modality fusion compared to those that do not, underscoring the transformative potential of early integration strategies and pointing toward a promising direction for contextually aware and effective information retrieval.




Abstract:Current representations used in reasoning steps of large language models can mostly be categorized into two main types: (1) natural language, which is difficult to verify; and (2) non-natural language, usually programming code, which is difficult for people who are unfamiliar with coding to read. In this paper, we propose to use a semi-structured form to represent reasoning steps of large language models. Specifically, we use relation tuples, which are not only human-readable but also machine-friendly and easier to verify than natural language. We implement a framework that includes three main components: (1) introducing relation tuples into the reasoning steps of large language models; (2) implementing an automatic verification process of reasoning steps with a local code interpreter based on relation tuples; and (3) integrating a simple and effective dynamic feedback mechanism, which we found helpful for self-improvement of large language models. The experimental results on various arithmetic datasets demonstrate the effectiveness of our method in improving the arithmetic reasoning ability of large language models. The source code is available at https://github.com/gpgg/art.
Abstract:The problem of hallucination and omission, a long-standing problem in machine translation (MT), is more pronounced when a large language model (LLM) is used in MT because an LLM itself is susceptible to these phenomena. In this work, we mitigate the problem in an LLM-based MT model by guiding it to better word alignment. We first study the correlation between word alignment and the phenomena of hallucination and omission in MT. Then we propose to utilize word alignment as preference to optimize the LLM-based MT model. The preference data are constructed by selecting chosen and rejected translations from multiple MT tools. Subsequently, direct preference optimization is used to optimize the LLM-based model towards the preference signal. Given the absence of evaluators specifically designed for hallucination and omission in MT, we further propose selecting hard instances and utilizing GPT-4 to directly evaluate the performance of the models in mitigating these issues. We verify the rationality of these designed evaluation methods by experiments, followed by extensive results demonstrating the effectiveness of word alignment-based preference optimization to mitigate hallucination and omission.
Abstract:The field of cross-lingual sentence embeddings has recently experienced significant advancements, but research concerning low-resource languages has lagged due to the scarcity of parallel corpora. This paper shows that cross-lingual word representation in low-resource languages is notably under-aligned with that in high-resource languages in current models. To address this, we introduce a novel framework that explicitly aligns words between English and eight low-resource languages, utilizing off-the-shelf word alignment models. This framework incorporates three primary training objectives: aligned word prediction and word translation ranking, along with the widely used translation ranking. We evaluate our approach through experiments on the bitext retrieval task, which demonstrate substantial improvements on sentence embeddings in low-resource languages. In addition, the competitive performance of the proposed model across a broader range of tasks in high-resource languages underscores its practicality.