Abstract:The single-stage point-based 3D object detectors have attracted widespread research interest due to their advantages of lightweight and fast inference speed. However, they still face challenges such as inadequate learning of low-quality objects (ILQ) and misalignment between localization accuracy and classification confidence (MLC). In this paper, we propose SGCCNet to alleviate these two issues. For ILQ, SGCCNet adopts a Saliency-Guided Data Augmentation (SGDA) strategy to enhance the robustness of the model on low-quality objects by reducing its reliance on salient features. Specifically, We construct a classification task and then approximate the saliency scores of points by moving points towards the point cloud centroid in a differentiable process. During the training process, SGCCNet will be forced to learn from low saliency features through dropping points. Meanwhile, to avoid internal covariate shift and contextual features forgetting caused by dropping points, we add a geometric normalization module and skip connection block in each stage. For MLC, we design a Confidence Correction Mechanism (CCM) specifically for point-based multi-class detectors. This mechanism corrects the confidence of the current proposal by utilizing the predictions of other key points within the local region in the post-processing stage. Extensive experiments on the KITTI dataset demonstrate the generality and effectiveness of our SGCCNet. On the KITTI \textit{test} set, SGCCNet achieves $80.82\%$ for the metric of $AP_{3D}$ on the \textit{Moderate} level, outperforming all other point-based detectors, surpassing IA-SSD and Fast Point R-CNN by $2.35\%$ and $3.42\%$, respectively. Additionally, SGCCNet demonstrates excellent portability for other point-based detectors
Abstract:An efficient linear self-attention fusion model is proposed in this paper for the task of hyperspectral image (HSI) and LiDAR data joint classification. The proposed method is comprised of a feature extraction module, an attention module, and a fusion module. The attention module is a plug-and-play linear self-attention module that can be extensively used in any model. The proposed model has achieved the overall accuracy of 95.40\% on the Houston dataset. The experimental results demonstrate the superiority of the proposed method over other state-of-the-art models.
Abstract:Traditional recommender systems encounter several challenges such as data sparsity and unexplained recommendation. To address these challenges, many works propose to exploit semantic information from review data. However, these methods have two major limitations in terms of the way to model textual features and capture textual interaction. For textual modeling, they simply concatenate all the reviews of a user/item into a single review. However, feature extraction at word/phrase level can violate the meaning of the original reviews. As for textual interaction, they defer the interactions to the prediction layer, making them fail to capture complex correlations between users and items. To address those limitations, we propose a novel Hierarchical Text Interaction model(HTI) for rating prediction. In HTI, we propose to model low-level word semantics and high-level review representations hierarchically. The hierarchy allows us to exploit textual features at different granularities. To further capture complex user-item interactions, we propose to exploit semantic correlations between each user-item pair at different hierarchies. At word level, we propose an attention mechanism specialized to each user-item pair, and capture the important words for representing each review. At review level, we mutually propagate textual features between the user and item, and capture the informative reviews. The aggregated review representations are integrated into a collaborative filtering framework for rating prediction. Experiments on five real-world datasets demonstrate that HTI outperforms state-of-the-art models by a large margin. Further case studies provide a deep insight into HTI's ability to capture semantic correlations at different levels of granularities for rating prediction.
Abstract:Supervised learning frequently boils down to determining hidden and bright parameters in a parameterized hypothesis space based on finite input-output samples. The hidden parameters determine the attributions of hidden predictors or the nonlinear mechanism of an estimator, while the bright parameters characterize how hidden predictors are linearly combined or the linear mechanism. In traditional learning paradigm, hidden and bright parameters are not distinguished and trained simultaneously in one learning process. Such an one-stage learning (OSL) brings a benefit of theoretical analysis but suffers from the high computational burden. To overcome this difficulty, a two-stage learning (TSL) scheme, featured by learning through deterministic assignment of hidden parameters (LtDaHP) was proposed, which suggests to deterministically generate the hidden parameters by using minimal Riesz energy points on a sphere and equally spaced points in an interval. We theoretically show that with such deterministic assignment of hidden parameters, LtDaHP with a neural network realization almost shares the same generalization performance with that of OSL. We also present a series of simulations and application examples to support the outperformance of LtDaHP
Abstract:Regularization is a well recognized powerful strategy to improve the performance of a learning machine and $l^q$ regularization schemes with $0<q<\infty$ are central in use. It is known that different $q$ leads to different properties of the deduced estimators, say, $l^2$ regularization leads to smooth estimators while $l^1$ regularization leads to sparse estimators. Then, how does the generalization capabilities of $l^q$ regularization learning vary with $q$? In this paper, we study this problem in the framework of statistical learning theory and show that implementing $l^q$ coefficient regularization schemes in the sample dependent hypothesis space associated with Gaussian kernel can attain the same almost optimal learning rates for all $0<q<\infty$. That is, the upper and lower bounds of learning rates for $l^q$ regularization learning are asymptotically identical for all $0<q<\infty$. Our finding tentatively reveals that, in some modeling contexts, the choice of $q$ might not have a strong impact with respect to the generalization capability. From this perspective, $q$ can be arbitrarily specified, or specified merely by other no generalization criteria like smoothness, computational complexity, sparsity, etc..
Abstract:We consider the approximation capability of orthogonal super greedy algorithms (OSGA) and its applications in supervised learning. OSGA is concerned with selecting more than one atoms in each iteration step, which, of course, greatly reduces the computational burden when compared with the conventional orthogonal greedy algorithm (OGA). We prove that even for function classes that are not the convex hull of the dictionary, OSGA does not degrade the approximation capability of OGA provided the dictionary is incoherent. Based on this, we deduce a tight generalization error bound for OSGA learning. Our results show that in the realm of supervised learning, OSGA provides a possibility to further reduce the computational burden of OGA in the premise of maintaining its prominent generalization capability.
Abstract:An extreme learning machine (ELM) can be regarded as a two stage feed-forward neural network (FNN) learning system which randomly assigns the connections with and within hidden neurons in the first stage and tunes the connections with output neurons in the second stage. Therefore, ELM training is essentially a linear learning problem, which significantly reduces the computational burden. Numerous applications show that such a computation burden reduction does not degrade the generalization capability. It has, however, been open that whether this is true in theory. The aim of our work is to study the theoretical feasibility of ELM by analyzing the pros and cons of ELM. In the previous part on this topic, we pointed out that via appropriate selection of the activation function, ELM does not degrade the generalization capability in the expectation sense. In this paper, we launch the study in a different direction and show that the randomness of ELM also leads to certain negative consequences. On one hand, we find that the randomness causes an additional uncertainty problem of ELM, both in approximation and learning. On the other hand, we theoretically justify that there also exists an activation function such that the corresponding ELM degrades the generalization capability. In particular, we prove that the generalization capability of ELM with Gaussian kernel is essentially worse than that of FNN with Gaussian kernel. To facilitate the use of ELM, we also provide a remedy to such a degradation. We find that the well-developed coefficient regularization technique can essentially improve the generalization capability. The obtained results reveal the essential characteristic of ELM and give theoretical guidance concerning how to use ELM.
Abstract:Multilook processing is a widely used speckle reduction approach in synthetic aperture radar (SAR) imaging. Conventionally, it is achieved by incoherently summing of some independent low-resolution images formulated from overlapping subbands of the SAR signal. However, in the context of compressive sensing (CS) SAR imaging, where the samples are collected at sub-Nyquist rate, the data spectrum is highly aliased that hinders the direct application of the existing multilook techniques. In this letter, we propose a new CS-SAR imaging method that can realize multilook processing simultaneously during image reconstruction. The main idea is to replace the SAR observation matrix by the inverse of multilook procedures, which is then combined with random sampling matrix to yield a multilook CS-SAR observation model. Then a joint sparse regularization model, considering pixel dependency of subimages, is derived to form multilook images. The suggested SAR imaging method can not only reconstruct sparse scene efficiently below Nyquist rate, but is also able to achieve a comparable reduction of speckles during reconstruction. Simulation results are finally provided to demonstrate the effectiveness of the proposed method.
Abstract:$l^q$-regularization has been demonstrated to be an attractive technique in machine learning and statistical modeling. It attempts to improve the generalization (prediction) capability of a machine (model) through appropriately shrinking its coefficients. The shape of a $l^q$ estimator differs in varying choices of the regularization order $q$. In particular, $l^1$ leads to the LASSO estimate, while $l^{2}$ corresponds to the smooth ridge regression. This makes the order $q$ a potential tuning parameter in applications. To facilitate the use of $l^{q}$-regularization, we intend to seek for a modeling strategy where an elaborative selection on $q$ is avoidable. In this spirit, we place our investigation within a general framework of $l^{q}$-regularized kernel learning under a sample dependent hypothesis space (SDHS). For a designated class of kernel functions, we show that all $l^{q}$ estimators for $0< q < \infty$ attain similar generalization error bounds. These estimated bounds are almost optimal in the sense that up to a logarithmic factor, the upper and lower bounds are asymptotically identical. This finding tentatively reveals that, in some modeling contexts, the choice of $q$ might not have a strong impact in terms of the generalization capability. From this perspective, $q$ can be arbitrarily specified, or specified merely by other no generalization criteria like smoothness, computational complexity, sparsity, etc..