Abstract:Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) molecular and material design; (3) automation and novel interfaces; (4) scientific communication and education; (5) research data management and automation; (6) hypothesis generation and evaluation; and (7) knowledge extraction and reasoning from scientific literature. Each team submission is presented in a summary table with links to the code and as brief papers in the appendix. Beyond team results, we discuss the hackathon event and its hybrid format, which included physical hubs in Toronto, Montreal, San Francisco, Berlin, Lausanne, and Tokyo, alongside a global online hub to enable local and virtual collaboration. Overall, the event highlighted significant improvements in LLM capabilities since the previous year's hackathon, suggesting continued expansion of LLMs for applications in materials science and chemistry research. These outcomes demonstrate the dual utility of LLMs as both multipurpose models for diverse machine learning tasks and platforms for rapid prototyping custom applications in scientific research.
Abstract:In response to the growing complexity and volume of scientific literature, this paper introduces the LLMs4Synthesis framework, designed to enhance the capabilities of Large Language Models (LLMs) in generating high-quality scientific syntheses. This framework addresses the need for rapid, coherent, and contextually rich integration of scientific insights, leveraging both open-source and proprietary LLMs. It also examines the effectiveness of LLMs in evaluating the integrity and reliability of these syntheses, alleviating inadequacies in current quantitative metrics. Our study contributes to this field by developing a novel methodology for processing scientific papers, defining new synthesis types, and establishing nine detailed quality criteria for evaluating syntheses. The integration of LLMs with reinforcement learning and AI feedback is proposed to optimize synthesis quality, ensuring alignment with established criteria. The LLMs4Synthesis framework and its components are made available, promising to enhance both the generation and evaluation processes in scientific research synthesis.
Abstract:This paper outlines the LLMs4OL 2024, the first edition of the Large Language Models for Ontology Learning Challenge. LLMs4OL is a community development initiative collocated with the 23rd International Semantic Web Conference (ISWC) to explore the potential of Large Language Models (LLMs) in Ontology Learning (OL), a vital process for enhancing the web with structured knowledge to improve interoperability. By leveraging LLMs, the challenge aims to advance understanding and innovation in OL, aligning with the goals of the Semantic Web to create a more intelligent and user-friendly web. In this paper, we give an overview of the 2024 edition of the LLMs4OL challenge and summarize the contributions.
Abstract:The increasing amount of published scholarly articles, exceeding 2.5 million yearly, raises the challenge for researchers in following scientific progress. Integrating the contributions from scholarly articles into a novel type of cognitive knowledge graph (CKG) will be a crucial element for accessing and organizing scholarly knowledge, surpassing the insights provided by titles and abstracts. This research focuses on effectively conveying structured scholarly knowledge by utilizing large language models (LLMs) to categorize scholarly articles and describe their contributions in a structured and comparable manner. While previous studies explored language models within specific research domains, the extensive domain-independent knowledge captured by LLMs offers a substantial opportunity for generating structured contribution descriptions as CKGs. Additionally, LLMs offer customizable pathways through prompt engineering or fine-tuning, thus facilitating to leveraging of smaller LLMs known for their efficiency, cost-effectiveness, and environmental considerations. Our methodology involves harnessing LLM knowledge, and complementing it with domain expert-verified scholarly data sourced from a CKG. This strategic fusion significantly enhances LLM performance, especially in tasks like scholarly article categorization and predicate recommendation. Our method involves fine-tuning LLMs with CKG knowledge and additionally injecting knowledge from a CKG with a novel prompting technique significantly increasing the accuracy of scholarly knowledge extraction. We integrated our approach in the Open Research Knowledge Graph (ORKG), thus enabling precise access to organized scholarly knowledge, crucially benefiting domain-independent scholarly knowledge exchange and dissemination among policymakers, industrial practitioners, and the general public.
Abstract:This study demonstrates the application of instruction finetuning of pretrained Large Language Models (LLMs) to automate the generation of AI research leaderboards, extracting (Task, Dataset, Metric, Score) quadruples from articles. It aims to streamline the dissemination of advancements in AI research by transitioning from traditional, manual community curation, or otherwise taxonomy-constrained natural language inference (NLI) models, to an automated, generative LLM-based approach. Utilizing the FLAN-T5 model, this research enhances LLMs' adaptability and reliability in information extraction, offering a novel method for structured knowledge representation.
Abstract:This paper introduces a scholarly Question Answering (QA) system on top of the NFDI4DataScience Gateway, employing a Retrieval Augmented Generation-based (RAG) approach. The NFDI4DS Gateway, as a foundational framework, offers a unified and intuitive interface for querying various scientific databases using federated search. The RAG-based scholarly QA, powered by a Large Language Model (LLM), facilitates dynamic interaction with search results, enhancing filtering capabilities and fostering a conversational engagement with the Gateway search. The effectiveness of both the Gateway and the scholarly QA system is demonstrated through experimental analysis.
Abstract:The rapid advancements in Large Language Models (LLMs) have opened new avenues for automating complex tasks in AI research. This paper investigates the efficacy of different LLMs-Mistral 7B, Llama-2, GPT-4-Turbo and GPT-4.o in extracting leaderboard information from empirical AI research articles. We explore three types of contextual inputs to the models: DocTAET (Document Title, Abstract, Experimental Setup, and Tabular Information), DocREC (Results, Experiments, and Conclusions), and DocFULL (entire document). Our comprehensive study evaluates the performance of these models in generating (Task, Dataset, Metric, Score) quadruples from research papers. The findings reveal significant insights into the strengths and limitations of each model and context type, providing valuable guidance for future AI research automation efforts.
Abstract:This demo will present the Research Assistant (RA) tool developed to assist with six main types of research tasks defined as standardized instruction templates, instantiated with user input, applied finally as prompts to well-known--for their sophisticated natural language processing abilities--AI tools, such as ChatGPT (https://chat.openai.com/) and Gemini (https://gemini.google.com/app). The six research tasks addressed by RA are: creating FAIR research comparisons, ideating research topics, drafting grant applications, writing scientific blogs, aiding preliminary peer reviews, and formulating enhanced literature search queries. RA's reliance on generative AI tools like ChatGPT or Gemini means the same research task assistance can be offered in any scientific discipline. We demonstrate its versatility by sharing RA outputs in Computer Science, Virology, and Climate Science, where the output with the RA tool assistance mirrored that from a domain expert who performed the same research task.
Abstract:In this study, we address one of the challenges of developing NER models for scholarly domains, namely the scarcity of suitable labeled data. We experiment with an approach using predictions from a fine-tuned LLM model to aid non-domain experts in annotating scientific entities within astronomy literature, with the goal of uncovering whether such a collaborative process can approximate domain expertise. Our results reveal moderate agreement between a domain expert and the LLM-assisted non-experts, as well as fair agreement between the domain expert and the LLM model's predictions. In an additional experiment, we compare the performance of finetuned and default LLMs on this task. We have also introduced a specialized scientific entity annotation scheme for astronomy, validated by a domain expert. Our approach adopts a scholarly research contribution-centric perspective, focusing exclusively on scientific entities relevant to the research theme. The resultant dataset, containing 5,000 annotated astronomy article titles, is made publicly available.
Abstract:Ontology Matching (OM), is a critical task in knowledge integration, where aligning heterogeneous ontologies facilitates data interoperability and knowledge sharing. Traditional OM systems often rely on expert knowledge or predictive models, with limited exploration of the potential of Large Language Models (LLMs). We present the LLMs4OM framework, a novel approach to evaluate the effectiveness of LLMs in OM tasks. This framework utilizes two modules for retrieval and matching, respectively, enhanced by zero-shot prompting across three ontology representations: concept, concept-parent, and concept-children. Through comprehensive evaluations using 20 OM datasets from various domains, we demonstrate that LLMs, under the LLMs4OM framework, can match and even surpass the performance of traditional OM systems, particularly in complex matching scenarios. Our results highlight the potential of LLMs to significantly contribute to the field of OM.