Abstract:Data pruning, the combinatorial task of selecting a small and informative subset from a large dataset, is crucial for mitigating the enormous computational costs associated with training data-hungry modern deep learning models at scale. Since large-scale data collections are invariably noisy, developing data pruning strategies that remain robust even in the presence of corruption is critical in practice. Unfortunately, the existing heuristics for (robust) data pruning lack theoretical coherence and rely on heroic assumptions, that are, often unattainable, by the very nature of the problem setting. Moreover, these strategies often yield sub-optimal neural scaling laws even compared to random sampling, especially in scenarios involving strong corruption and aggressive pruning rates -- making provably robust data pruning an open challenge. In response, in this work, we propose Geometric Median ($\gm$) Matching -- a herding~\citep{welling2009herding} style greedy algorithm -- that yields a $k$-subset such that the mean of the subset approximates the geometric median of the (potentially) noisy dataset. Theoretically, we show that $\gm$ Matching enjoys an improved $\gO(1/k)$ scaling over $\gO(1/\sqrt{k})$ scaling of uniform sampling; while achieving the optimal breakdown point of 1/2 even under arbitrary corruption. Extensive experiments across popular deep learning benchmarks indicate that $\gm$ Matching consistently outperforms prior state-of-the-art; the gains become more profound at high rates of corruption and aggressive pruning rates; making $\gm$ Matching a strong baseline for future research in robust data pruning.
Abstract:Dual-encoder models have demonstrated significant success in dense retrieval tasks for open-domain question answering that mostly involves zero-shot and few-shot scenarios. However, their performance in many-shot retrieval problems where training data is abundant, such as extreme multi-label classification (XMC), remains under-explored. Existing empirical evidence suggests that, for such problems, the dual-encoder method's accuracies lag behind the performance of state-of-the-art (SOTA) extreme classification methods that grow the number of learnable parameters linearly with the number of classes. As a result, some recent extreme classification techniques use a combination of dual-encoders and a learnable classification head for each class to excel on these tasks. In this paper, we investigate the potential of "pure" DE models in XMC tasks. Our findings reveal that when trained correctly standard dual-encoders can match or outperform SOTA extreme classification methods by up to 2% at Precision@1 even on the largest XMC datasets while being 20x smaller in terms of the number of trainable parameters. We further propose a differentiable topk error-based loss function, which can be used to specifically optimize for Recall@k metrics. We include our PyTorch implementation along with other resources for reproducing the results in the supplementary material.
Abstract:Pretrained large language models (LLMs) are strong in-context learners that are able to perform few-shot learning without changing model parameters. However, as we show, fine-tuning an LLM on any specific task generally destroys its in-context ability. We discover an important cause of this loss, format specialization, where the model overfits to the format of the fine-tuned task and is unable to output anything beyond this format. We further show that format specialization happens at the beginning of fine-tuning. To solve this problem, we propose Prompt Tuning with MOdel Tuning (ProMoT), a simple yet effective two-stage fine-tuning framework that preserves in-context abilities of the pretrained model. ProMoT first trains a soft prompt for the fine-tuning target task, and then fine-tunes the model itself with this soft prompt attached. ProMoT offloads task-specific formats into the soft prompt that can be removed when doing other in-context tasks. We fine-tune mT5 XXL with ProMoT on natural language inference (NLI) and English-French translation and evaluate the in-context abilities of the resulting models on 8 different NLP tasks. ProMoT achieves similar performance on the fine-tuned tasks compared with vanilla fine-tuning, but with much less reduction of in-context learning performances across the board. More importantly, ProMoT shows remarkable generalization ability on tasks that have different formats, e.g. fine-tuning on a NLI binary classification task improves the model's in-context ability to do summarization (+0.53 Rouge-2 score compared to the pretrained model), making ProMoT a promising method to build general purpose capabilities such as grounding and reasoning into LLMs with small but high quality datasets. When extended to sequential or multi-task training, ProMoT can achieve even better out-of-domain generalization performance.
Abstract:Extreme multi-label classification (XMC) is a popular framework for solving many real-world problems that require accurate prediction from a very large number of potential output choices. A popular approach for dealing with the large label space is to arrange the labels into a shallow tree-based index and then learn an ML model to efficiently search this index via beam search. Existing methods initialize the tree index by clustering the label space into a few mutually exclusive clusters based on pre-defined features and keep it fixed throughout the training procedure. This approach results in a sub-optimal indexing structure over the label space and limits the search performance to the quality of choices made during the initialization of the index. In this paper, we propose a novel method ELIAS which relaxes the tree-based index to a specialized weighted graph-based index which is learned end-to-end with the final task objective. More specifically, ELIAS models the discrete cluster-to-label assignments in the existing tree-based index as soft learnable parameters that are learned jointly with the rest of the ML model. ELIAS achieves state-of-the-art performance on several large-scale extreme classification benchmarks with millions of labels. In particular, ELIAS can be up to 2.5% better at precision@1 and up to 4% better at recall@100 than existing XMC methods. A PyTorch implementation of ELIAS along with other resources is available at https://github.com/nilesh2797/ELIAS.
Abstract:Learning on graphs has attracted significant attention in the learning community due to numerous real-world applications. In particular, graph neural networks (GNNs), which take numerical node features and graph structure as inputs, have been shown to achieve state-of-the-art performance on various graph-related learning tasks. Recent works exploring the correlation between numerical node features and graph structure via self-supervised learning have paved the way for further performance improvements of GNNs. However, methods used for extracting numerical node features from raw data are still graph-agnostic within standard GNN pipelines. This practice is sub-optimal as it prevents one from fully utilizing potential correlations between graph topology and node attributes. To mitigate this issue, we propose a new self-supervised learning framework, Graph Information Aided Node feature exTraction (GIANT). GIANT makes use of the eXtreme Multi-label Classification (XMC) formalism, which is crucial for fine-tuning the language model based on graph information, and scales to large datasets. We also provide a theoretical analysis that justifies the use of XMC over link prediction and motivates integrating XR-Transformers, a powerful method for solving XMC problems, into the GIANT framework. We demonstrate the superior performance of GIANT over the standard GNN pipeline on Open Graph Benchmark datasets: For example, we improve the accuracy of the top-ranked method GAMLP from $68.25\%$ to $69.67\%$, SGC from $63.29\%$ to $66.10\%$ and MLP from $47.24\%$ to $61.10\%$ on the ogbn-papers100M dataset by leveraging GIANT.