Abstract:We present a novel approach to reconstruction of 3D cardiac motion from sparse intraoperative data. While existing methods can accurately reconstruct 3D organ geometries from full 3D volumetric imaging, they cannot be used during surgical interventions where usually limited observed data, such as a few 2D frames or 1D signals, is available in real-time. We propose a versatile framework for reconstructing 3D motion from such partial data. It discretizes the 3D space into a deformable tetrahedral grid with signed distance values, providing implicit unlimited resolution while maintaining explicit control over motion dynamics. Given an initial 3D model reconstructed from pre-operative full volumetric data, our system, equipped with an universal observation encoder, can reconstruct coherent 3D cardiac motion from full 3D volumes, a few 2D MRI slices or even 1D signals. Extensive experiments on cardiac intervention scenarios demonstrate our ability to generate plausible and anatomically consistent 3D motion reconstructions from various sparse real-time observations, highlighting its potential for multimodal cardiac imaging. Our code and model will be made available at https://github.com/Scalsol/MedTet.
Abstract:Text-to-image diffusion models have demonstrated remarkable capability in generating realistic images from arbitrary text prompts. However, they often produce inconsistent results for compositional prompts such as "two dogs" or "a penguin on the right of a bowl". Understanding these inconsistencies is crucial for reliable image generation. In this paper, we highlight the significant role of initial noise in these inconsistencies, where certain noise patterns are more reliable for compositional prompts than others. Our analyses reveal that different initial random seeds tend to guide the model to place objects in distinct image areas, potentially adhering to specific patterns of camera angles and image composition associated with the seed. To improve the model's compositional ability, we propose a method for mining these reliable cases, resulting in a curated training set of generated images without requiring any manual annotation. By fine-tuning text-to-image models on these generated images, we significantly enhance their compositional capabilities. For numerical composition, we observe relative increases of 29.3% and 19.5% for Stable Diffusion and PixArt-{\alpha}, respectively. Spatial composition sees even larger gains, with 60.7% for Stable Diffusion and 21.1% for PixArt-{\alpha}.
Abstract:Visual object counting is a fundamental computer vision task underpinning numerous real-world applications, from cell counting in biomedicine to traffic and wildlife monitoring. However, existing methods struggle to handle the challenge of stacked 3D objects in which most objects are hidden by those above them. To address this important yet underexplored problem, we propose a novel 3D counting approach that decomposes the task into two complementary subproblems - estimating the 3D geometry of the object stack and the occupancy ratio from multi-view images. By combining geometric reconstruction and deep learning-based depth analysis, our method can accurately count identical objects within containers, even when they are irregularly stacked. We validate our 3D Counting pipeline on diverse real-world and large-scale synthetic datasets, which we will release publicly to facilitate further research.
Abstract:Diffusion models excel at high-quality image and video generation. However, a major drawback is their high latency. A simple yet powerful way to speed them up is by merging similar tokens for faster computation, though this can result in some quality loss. In this paper, we demonstrate that preserving important tokens during merging significantly improves sample quality. Notably, the importance of each token can be reliably determined using the classifier-free guidance magnitude, as this measure is strongly correlated with the conditioning input and corresponds to output fidelity. Since classifier-free guidance incurs no additional computational cost or requires extra modules, our method can be easily integrated into most diffusion-based frameworks. Experiments show that our approach significantly outperforms the baseline across various applications, including text-to-image synthesis, multi-view image generation, and video generation.
Abstract:Recent works on Generalized Referring Expression Segmentation (GRES) struggle with handling complex expressions referring to multiple distinct objects. This is because these methods typically employ an end-to-end foreground-background segmentation and lack a mechanism to explicitly differentiate and associate different object instances to the text query. To this end, we propose InstAlign, a method that incorporates object-level reasoning into the segmentation process. Our model leverages both text and image inputs to extract a set of object-level tokens that capture both the semantic information in the input prompt and the objects within the image. By modeling the text-object alignment via instance-level supervision, each token uniquely represents an object segment in the image, while also aligning with relevant semantic information from the text. Extensive experiments on the gRefCOCO and Ref-ZOM benchmarks demonstrate that our method significantly advances state-of-the-art performance, setting a new standard for precise and flexible GRES.
Abstract:Unsigned Distance Functions (UDFs) can be used to represent non-watertight surfaces in a deep learning framework. However, UDFs tend to be brittle and difficult to learn, in part because the surface is located exactly where the UDF is non-differentiable. In this work, we show that Gradient Distance Functions (GDFs) can remedy this by being differentiable at the surface while still being able to represent open surfaces. This is done by associating to each 3D point a 3D vector whose norm is taken to be the unsigned distance to the surface and whose orientation is taken to be the direction towards the closest surface point. We demonstrate the effectiveness of GDFs on ShapeNet Car, Multi-Garment, and 3D-Scene datasets with both single-shape reconstruction networks or categorical auto-decoders.
Abstract:The study focuses on developing a digital twin testbed tailored for public safety technologies, incorporating simulated wireless communication within the digital world. The integration enables rapid analysis of signal strength, facilitating effective communication among personnel during catastrophic incidents in the virtual environment. The virtual world also helps with the training of first responders. The digital environment is constructed using the actual training facility for first responders as a blueprint. Using the photo-reference method, we meticulously constructed all buildings and objects within this environment. These reconstructed models are precisely placed relative to their real-world counterparts. Subsequently, all structures and objects are integrated into the Unreal Engine (UE) to create an interactive environment tailored specifically to the requirements of first responders.
Abstract:Domain Generalization (DG) aims to train models that perform well not only on the training (source) domains but also on novel, unseen target data distributions. A key challenge in DG is preventing overfitting to source domains, which can be mitigated by finding flatter minima in the loss landscape. In this work, we propose Quantization-aware Training for Domain Generalization (QT-DoG) and demonstrate that weight quantization effectively leads to flatter minima in the loss landscape, thereby enhancing domain generalization. Unlike traditional quantization methods focused on model compression, QT-DoG exploits quantization as an implicit regularizer by inducing noise in model weights, guiding the optimization process toward flatter minima that are less sensitive to perturbations and overfitting. We provide both theoretical insights and empirical evidence demonstrating that quantization inherently encourages flatter minima, leading to better generalization across domains. Moreover, with the benefit of reducing the model size through quantization, we demonstrate that an ensemble of multiple quantized models further yields superior accuracy than the state-of-the-art DG approaches with no computational or memory overheads. Our extensive experiments demonstrate that QT-DoG generalizes across various datasets, architectures, and quantization algorithms, and can be combined with other DG methods, establishing its versatility and robustness.
Abstract:Human emotional expression is inherently dynamic, complex, and fluid, characterized by smooth transitions in intensity throughout verbal communication. However, the modeling of such intensity fluctuations has been largely overlooked by previous audio-driven talking-head generation methods, which often results in static emotional outputs. In this paper, we explore how emotion intensity fluctuates during speech, proposing a method for capturing and generating these subtle shifts for talking-head generation. Specifically, we develop a talking-head framework that is capable of generating a variety of emotions with precise control over intensity levels. This is achieved by learning a continuous emotion latent space, where emotion types are encoded within latent orientations and emotion intensity is reflected in latent norms. In addition, to capture the dynamic intensity fluctuations, we adopt an audio-to-intensity predictor by considering the speaking tone that reflects the intensity. The training signals for this predictor are obtained through our emotion-agnostic intensity pseudo-labeling method without the need of frame-wise intensity labeling. Extensive experiments and analyses validate the effectiveness of our proposed method in accurately capturing and reproducing emotion intensity fluctuations in talking-head generation, thereby significantly enhancing the expressiveness and realism of the generated outputs.
Abstract:Shadow boundaries can be confused with material boundaries as both exhibit sharp changes in luminance or contrast within a scene. However, shadows do not modify the intrinsic color or texture of surfaces. Therefore, on both sides of shadow edges traversing regions with the same material, the original color and textures should be the same if the shadow is removed properly. These shadow/shadow-free pairs are very useful but hard-to-collect supervision signals. The crucial contribution of this paper is to learn how to identify those shadow edges that traverse material-consistent regions and how to use them as self-supervision for shadow removal refinement during test time. To achieve this, we fine-tune SAM, an image segmentation foundation model, to produce a shadow-invariant segmentation and then extract material-consistent shadow edges by comparing the SAM segmentation with the shadow mask. Utilizing these shadow edges, we introduce color and texture-consistency losses to enhance the shadow removal process. We demonstrate the effectiveness of our method in improving shadow removal results on more challenging, in-the-wild images, outperforming the state-of-the-art shadow removal methods. Additionally, we propose a new metric and an annotated dataset for evaluating the performance of shadow removal methods without the need for paired shadow/shadow-free data.