Abstract:Unsigned Distance Functions (UDFs) can be used to represent non-watertight surfaces in a deep learning framework. However, UDFs tend to be brittle and difficult to learn, in part because the surface is located exactly where the UDF is non-differentiable. In this work, we show that Gradient Distance Functions (GDFs) can remedy this by being differentiable at the surface while still being able to represent open surfaces. This is done by associating to each 3D point a 3D vector whose norm is taken to be the unsigned distance to the surface and whose orientation is taken to be the direction towards the closest surface point. We demonstrate the effectiveness of GDFs on ShapeNet Car, Multi-Garment, and 3D-Scene datasets with both single-shape reconstruction networks or categorical auto-decoders.
Abstract:The study focuses on developing a digital twin testbed tailored for public safety technologies, incorporating simulated wireless communication within the digital world. The integration enables rapid analysis of signal strength, facilitating effective communication among personnel during catastrophic incidents in the virtual environment. The virtual world also helps with the training of first responders. The digital environment is constructed using the actual training facility for first responders as a blueprint. Using the photo-reference method, we meticulously constructed all buildings and objects within this environment. These reconstructed models are precisely placed relative to their real-world counterparts. Subsequently, all structures and objects are integrated into the Unreal Engine (UE) to create an interactive environment tailored specifically to the requirements of first responders.
Abstract:Domain Generalization (DG) aims to train models that perform well not only on the training (source) domains but also on novel, unseen target data distributions. A key challenge in DG is preventing overfitting to source domains, which can be mitigated by finding flatter minima in the loss landscape. In this work, we propose Quantization-aware Training for Domain Generalization (QT-DoG) and demonstrate that weight quantization effectively leads to flatter minima in the loss landscape, thereby enhancing domain generalization. Unlike traditional quantization methods focused on model compression, QT-DoG exploits quantization as an implicit regularizer by inducing noise in model weights, guiding the optimization process toward flatter minima that are less sensitive to perturbations and overfitting. We provide both theoretical insights and empirical evidence demonstrating that quantization inherently encourages flatter minima, leading to better generalization across domains. Moreover, with the benefit of reducing the model size through quantization, we demonstrate that an ensemble of multiple quantized models further yields superior accuracy than the state-of-the-art DG approaches with no computational or memory overheads. Our extensive experiments demonstrate that QT-DoG generalizes across various datasets, architectures, and quantization algorithms, and can be combined with other DG methods, establishing its versatility and robustness.
Abstract:Human emotional expression is inherently dynamic, complex, and fluid, characterized by smooth transitions in intensity throughout verbal communication. However, the modeling of such intensity fluctuations has been largely overlooked by previous audio-driven talking-head generation methods, which often results in static emotional outputs. In this paper, we explore how emotion intensity fluctuates during speech, proposing a method for capturing and generating these subtle shifts for talking-head generation. Specifically, we develop a talking-head framework that is capable of generating a variety of emotions with precise control over intensity levels. This is achieved by learning a continuous emotion latent space, where emotion types are encoded within latent orientations and emotion intensity is reflected in latent norms. In addition, to capture the dynamic intensity fluctuations, we adopt an audio-to-intensity predictor by considering the speaking tone that reflects the intensity. The training signals for this predictor are obtained through our emotion-agnostic intensity pseudo-labeling method without the need of frame-wise intensity labeling. Extensive experiments and analyses validate the effectiveness of our proposed method in accurately capturing and reproducing emotion intensity fluctuations in talking-head generation, thereby significantly enhancing the expressiveness and realism of the generated outputs.
Abstract:Shadow boundaries can be confused with material boundaries as both exhibit sharp changes in luminance or contrast within a scene. However, shadows do not modify the intrinsic color or texture of surfaces. Therefore, on both sides of shadow edges traversing regions with the same material, the original color and textures should be the same if the shadow is removed properly. These shadow/shadow-free pairs are very useful but hard-to-collect supervision signals. The crucial contribution of this paper is to learn how to identify those shadow edges that traverse material-consistent regions and how to use them as self-supervision for shadow removal refinement during test time. To achieve this, we fine-tune SAM, an image segmentation foundation model, to produce a shadow-invariant segmentation and then extract material-consistent shadow edges by comparing the SAM segmentation with the shadow mask. Utilizing these shadow edges, we introduce color and texture-consistency losses to enhance the shadow removal process. We demonstrate the effectiveness of our method in improving shadow removal results on more challenging, in-the-wild images, outperforming the state-of-the-art shadow removal methods. Additionally, we propose a new metric and an annotated dataset for evaluating the performance of shadow removal methods without the need for paired shadow/shadow-free data.
Abstract:Real-time visual feedback from catheterization analysis is crucial for enhancing surgical safety and efficiency during endovascular interventions. However, existing datasets are often limited to specific tasks, small scale, and lack the comprehensive annotations necessary for broader endovascular intervention understanding. To tackle these limitations, we introduce CathAction, a large-scale dataset for catheterization understanding. Our CathAction dataset encompasses approximately 500,000 annotated frames for catheterization action understanding and collision detection, and 25,000 ground truth masks for catheter and guidewire segmentation. For each task, we benchmark recent related works in the field. We further discuss the challenges of endovascular intentions compared to traditional computer vision tasks and point out open research questions. We hope that CathAction will facilitate the development of endovascular intervention understanding methods that can be applied to real-world applications. The dataset is available at https://airvlab.github.io/cathdata/.
Abstract:This study presents a novel mechanical metallic reflector array to guide wireless signals to the point of interest, thereby enhancing received signal quality. Comprised of numerous individual units, this device, which acts as a linear Fresnel reflector (LFR), facilitates the reflection of incoming signals to a desired location. Leveraging geometric principles, we present a systematic approach for redirecting beams from an Access Point (AP) toward User Equipment (UE) positions. This methodology is geared towards optimizing beam allocation, thereby maximizing the number of beams directed towards the UE. Ray tracing simulations conducted for two 3D wireless communication scenarios demonstrate significant increases in path gains and received signal strengths (RSS) by at least 50dB with strategically positioned devices.
Abstract:Extracting surfaces from Signed Distance Fields (SDFs) can be accomplished using traditional algorithms, such as Marching Cubes. However, since they rely on sign flips across the surface, these algorithms cannot be used directly on Unsigned Distance Fields (UDFs). In this work, we introduce a deep-learning approach to taking a UDF and turning it locally into an SDF, so that it can be effectively triangulated using existing algorithms. We show that it achieves better accuracy in surface detection than existing methods. Furthermore it generalizes well to unseen shapes and datasets, while being parallelizable. We also demonstrate the flexibily of the method by using it in conjunction with DualMeshUDF, a state of the art dual meshing method that can operate on UDFs, improving its results and removing the need to tune its parameters.
Abstract:Advances in generative models increase the need for sample quality assessment. To do so, previous methods rely on a pre-trained feature extractor to embed the generated samples and real samples into a common space for comparison. However, different feature extractors might lead to inconsistent assessment outcomes. Moreover, these methods are not applicable for domains where a robust, universal feature extractor does not yet exist, such as medical images or 3D assets. In this paper, we propose to directly examine the latent space of the trained generative model to infer generated sample quality. This is feasible because the quality a generated sample directly relates to the amount of training data resembling it, and we can infer this information by examining the density of the latent space. Accordingly, we use a latent density score function to quantify sample quality. We show that the proposed score correlates highly with the sample quality for various generative models including VAEs, GANs and Latent Diffusion Models. Compared with previous quality assessment methods, our method has the following advantages: 1) pre-generation quality estimation with reduced computational cost, 2) generalizability to various domains and modalities, and 3) applicability to latent-based image editing and generation methods. Extensive experiments demonstrate that our proposed methods can benefit downstream tasks such as few-shot image classification and latent face image editing. Code is available at https://github.com/cvlab-stonybrook/LS-sample-quality.
Abstract:Semi-supervised semantic segmentation methods leverage unlabeled data by pseudo-labeling them. Thus the success of these methods hinges on the reliablility of the pseudo-labels. Existing methods mostly choose high-confidence pixels in an effort to avoid erroneous pseudo-labels. However, high confidence does not guarantee correct pseudo-labels especially in the initial training iterations. In this paper, we propose a novel approach to reliably learn from pseudo-labels. First, we unify the predictions from a trained object detector and a semantic segmentation model to identify reliable pseudo-label pixels. Second, we assign different learning weights to pseudo-labeled pixels to avoid noisy training signals. To determine these weights, we first use the reliable pseudo-label pixels identified from the first step and labeled pixels to construct a prototype for each class. Then, the per-pixel weight is the structural similarity between the pixel and the prototype measured via rank-statistics similarity. This metric is robust to noise, making it better suited for comparing features from unlabeled images, particularly in the initial training phases where wrong pseudo labels are prone to occur. We show that our method can be easily integrated into four semi-supervised semantic segmentation frameworks, and improves them in both Cityscapes and Pascal VOC datasets.