Abstract:We introduce an approach to bias deep generative models, such as GANs and diffusion models, towards generating data with either enhanced fidelity or increased diversity. Our approach involves manipulating the distribution of training and generated data through a novel metric for individual samples, named pseudo density, which is based on the nearest-neighbor information from real samples. Our approach offers three distinct techniques to adjust the fidelity and diversity of deep generative models: 1) Per-sample perturbation, enabling precise adjustments for individual samples towards either more common or more unique characteristics; 2) Importance sampling during model inference to enhance either fidelity or diversity in the generated data; 3) Fine-tuning with importance sampling, which guides the generative model to learn an adjusted distribution, thus controlling fidelity and diversity. Furthermore, our fine-tuning method demonstrates the ability to improve the Frechet Inception Distance (FID) for pre-trained generative models with minimal iterations.
Abstract:Explanation is important for text classification tasks. One prevalent type of explanation is rationales, which are text snippets of input text that suffice to yield the prediction and are meaningful to humans. A lot of research on rationalization has been based on the selective rationalization framework, which has recently been shown to be problematic due to the interlocking dynamics. In this paper, we show that we address the interlocking problem in the multi-aspect setting, where we aim to generate multiple rationales for multiple outputs. More specifically, we propose a multi-stage training method incorporating an additional self-supervised contrastive loss that helps to generate more semantically diverse rationales. Empirical results on the beer review dataset show that our method improves significantly the rationalization performance.