Abstract:Reward shaping is one of the most effective methods to tackle the crucial yet challenging problem of credit assignment in Reinforcement Learning (RL). However, designing shaping functions usually requires much expert knowledge and hand-engineering, and the difficulties are further exacerbated given multiple similar tasks to solve. In this paper, we consider reward shaping on a distribution of tasks, and propose a general meta-learning framework to automatically learn the efficient reward shaping on newly sampled tasks, assuming only shared state space but not necessarily action space. We first derive the theoretically optimal reward shaping in terms of credit assignment in model-free RL. We then propose a value-based meta-learning algorithm to extract an effective prior over the optimal reward shaping. The prior can be applied directly to new tasks, or provably adapted to the task-posterior while solving the task within few gradient updates. We demonstrate the effectiveness of our shaping through significantly improved learning efficiency and interpretable visualizations across various settings, including notably a successful transfer from DQN to DDPG.
Abstract:Crowd behavior understanding is crucial yet challenging across a wide range of applications, since crowd behavior is inherently determined by a sequential decision-making process based on various factors, such as the pedestrians' own destinations, interaction with nearby pedestrians and anticipation of upcoming events. In this paper, we propose a novel framework of Social-Aware Generative Adversarial Imitation Learning (SA-GAIL) to mimic the underlying decision-making process of pedestrians in crowds. Specifically, we infer the latent factors of human decision-making process in an unsupervised manner by extending the Generative Adversarial Imitation Learning framework to anticipate future paths of pedestrians. Different factors of human decision making are disentangled with mutual information maximization, with the process modeled by collision avoidance regularization and Social-Aware LSTMs. Experimental results demonstrate the potential of our framework in disentangling the latent decision-making factors of pedestrians and stronger abilities in predicting future trajectories.
Abstract:We took part in the YouTube-8M Video Understanding Challenge hosted on Kaggle, and achieved the 10th place within less than one month's time. In this paper, we present an extensive analysis and solution to the underlying machine-learning problem based on frame-level data, where major challenges are identified and corresponding preliminary methods are proposed. It's noteworthy that, with merely the proposed strategies and uniformly-averaging multi-crop ensemble was it sufficient for us to reach our ranking. We also report the methods we believe to be promising but didn't have enough time to train to convergence. We hope this paper could serve, to some extent, as a review and guideline of the YouTube-8M multi-label video classification benchmark, inspiring future attempts and research.