Picture for Francesca De Benetti

Francesca De Benetti

AutoPaint: A Self-Inpainting Method for Unsupervised Anomaly Detection

Add code
May 21, 2023
Viaarxiv icon

Self-Supervised Learning for Physiologically-Based Pharmacokinetic Modeling in Dynamic PET

Add code
May 17, 2023
Figure 1 for Self-Supervised Learning for Physiologically-Based Pharmacokinetic Modeling in Dynamic PET
Figure 2 for Self-Supervised Learning for Physiologically-Based Pharmacokinetic Modeling in Dynamic PET
Figure 3 for Self-Supervised Learning for Physiologically-Based Pharmacokinetic Modeling in Dynamic PET
Figure 4 for Self-Supervised Learning for Physiologically-Based Pharmacokinetic Modeling in Dynamic PET
Viaarxiv icon

Weakly-supervised Biomechanically-constrained CT/MRI Registration of the Spine

Add code
May 16, 2022
Figure 1 for Weakly-supervised Biomechanically-constrained CT/MRI Registration of the Spine
Figure 2 for Weakly-supervised Biomechanically-constrained CT/MRI Registration of the Spine
Figure 3 for Weakly-supervised Biomechanically-constrained CT/MRI Registration of the Spine
Figure 4 for Weakly-supervised Biomechanically-constrained CT/MRI Registration of the Spine
Viaarxiv icon

Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning

Add code
Dec 23, 2021
Figure 1 for Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning
Figure 2 for Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning
Figure 3 for Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning
Figure 4 for Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning
Viaarxiv icon

Patient-specific virtual spine straightening and vertebra inpainting: An automatic framework for osteoplasty planning

Add code
Mar 23, 2021
Figure 1 for Patient-specific virtual spine straightening and vertebra inpainting: An automatic framework for osteoplasty planning
Figure 2 for Patient-specific virtual spine straightening and vertebra inpainting: An automatic framework for osteoplasty planning
Figure 3 for Patient-specific virtual spine straightening and vertebra inpainting: An automatic framework for osteoplasty planning
Figure 4 for Patient-specific virtual spine straightening and vertebra inpainting: An automatic framework for osteoplasty planning
Viaarxiv icon