Abstract:The training data for many Large Language Models (LLMs) is contaminated with test data. This means that public benchmarks used to assess LLMs are compromised, suggesting a performance gap between benchmark scores and actual capabilities. Ideally, a private holdout set could be used to accurately verify scores. Unfortunately, such datasets do not exist for most benchmarks, and post-hoc construction of sufficiently similar datasets is non-trivial. To address these issues, we introduce a systematic methodology for (i) retrospectively constructing a holdout dataset for a target dataset, (ii) demonstrating the statistical indistinguishability of this retro-holdout dataset, and (iii) comparing LLMs on the two datasets to quantify the performance gap due to the dataset's public availability. Applying these methods to TruthfulQA, we construct and release Retro-Misconceptions, on which we evaluate twenty LLMs and find that some have inflated scores by as much as 16 percentage points. Our results demonstrate that public benchmark scores do not always accurately assess model properties, and underscore the importance of improved data practices in the field.
Abstract:LLM agents have the potential to revolutionize defensive cyber operations, but their offensive capabilities are not yet fully understood. To prepare for emerging threats, model developers and governments are evaluating the cyber capabilities of foundation models. However, these assessments often lack transparency and a comprehensive focus on offensive capabilities. In response, we introduce the Catastrophic Cyber Capabilities Benchmark (3CB), a novel framework designed to rigorously assess the real-world offensive capabilities of LLM agents. Our evaluation of modern LLMs on 3CB reveals that frontier models, such as GPT-4o and Claude 3.5 Sonnet, can perform offensive tasks such as reconnaissance and exploitation across domains ranging from binary analysis to web technologies. Conversely, smaller open-source models exhibit limited offensive capabilities. Our software solution and the corresponding benchmark provides a critical tool to reduce the gap between rapidly improving capabilities and robustness of cyber offense evaluations, aiding in the safer deployment and regulation of these powerful technologies.
Abstract:As large language models (LLMs) become more capable, there is an urgent need for interpretable and transparent tools. Current methods are difficult to implement, and accessible tools to analyze model internals are lacking. To bridge this gap, we present DeepDecipher - an API and interface for probing neurons in transformer models' MLP layers. DeepDecipher makes the outputs of advanced interpretability techniques for LLMs readily available. The easy-to-use interface also makes inspecting these complex models more intuitive. This paper outlines DeepDecipher's design and capabilities. We demonstrate how to analyze neurons, compare models, and gain insights into model behavior. For example, we contrast DeepDecipher's functionality with similar tools like Neuroscope and OpenAI's Neuron Explainer. DeepDecipher enables efficient, scalable analysis of LLMs. By granting access to state-of-the-art interpretability methods, DeepDecipher makes LLMs more transparent, trustworthy, and safe. Researchers, engineers, and developers can quickly diagnose issues, audit systems, and advance the field.
Abstract:Recent model editing techniques promise to mitigate the problem of memorizing false or outdated associations during LLM training. However, we show that these techniques can introduce large unwanted side effects which are not detected by existing specificity benchmarks. We extend the existing CounterFact benchmark to include a dynamic component and dub our benchmark CounterFact+. Additionally, we extend the metrics used for measuring specificity by a principled KL divergence-based metric. We use this improved benchmark to evaluate recent model editing techniques and find that they suffer from low specificity. Our findings highlight the need for improved specificity benchmarks that identify and prevent unwanted side effects.
Abstract:Advances in Large Language Models (LLMs) have led to remarkable capabilities, yet their inner mechanisms remain largely unknown. To understand these models, we need to unravel the functions of individual neurons and their contribution to the network. This paper introduces a novel automated approach designed to scale interpretability techniques across a vast array of neurons within LLMs, to make them more interpretable and ultimately safe. Conventional methods require examination of examples with strong neuron activation and manual identification of patterns to decipher the concepts a neuron responds to. We propose Neuron to Graph (N2G), an innovative tool that automatically extracts a neuron's behaviour from the dataset it was trained on and translates it into an interpretable graph. N2G uses truncation and saliency methods to emphasise only the most pertinent tokens to a neuron while enriching dataset examples with diverse samples to better encompass the full spectrum of neuron behaviour. These graphs can be visualised to aid researchers' manual interpretation, and can generate token activations on text for automatic validation by comparison with the neuron's ground truth activations, which we use to show that the model is better at predicting neuron activation than two baseline methods. We also demonstrate how the generated graph representations can be flexibly used to facilitate further automation of interpretability research, by searching for neurons with particular properties, or programmatically comparing neurons to each other to identify similar neurons. Our method easily scales to build graph representations for all neurons in a 6-layer Transformer model using a single Tesla T4 GPU, allowing for wide usability. We release the code and instructions for use at https://github.com/alexjfoote/Neuron2Graph.
Abstract:Understanding the function of individual neurons within language models is essential for mechanistic interpretability research. We propose $\textbf{Neuron to Graph (N2G)}$, a tool which takes a neuron and its dataset examples, and automatically distills the neuron's behaviour on those examples to an interpretable graph. This presents a less labour intensive approach to interpreting neurons than current manual methods, that will better scale these methods to Large Language Models (LLMs). We use truncation and saliency methods to only present the important tokens, and augment the dataset examples with more diverse samples to better capture the extent of neuron behaviour. These graphs can be visualised to aid manual interpretation by researchers, but can also output token activations on text to compare to the neuron's ground truth activations for automatic validation. N2G represents a step towards scalable interpretability methods by allowing us to convert neurons in an LLM to interpretable representations of measurable quality.