Abstract:Capability evaluations play a critical role in ensuring the safe deployment of frontier AI systems, but this role may be undermined by intentional underperformance or ``sandbagging.'' We present a novel model-agnostic method for detecting sandbagging behavior using noise injection. Our approach is founded on the observation that introducing Gaussian noise into the weights of models either prompted or fine-tuned to sandbag can considerably improve their performance. We test this technique across a range of model sizes and multiple-choice question benchmarks (MMLU, AI2, WMDP). Our results demonstrate that noise injected sandbagging models show performance improvements compared to standard models. Leveraging this effect, we develop a classifier that consistently identifies sandbagging behavior. Our unsupervised technique can be immediately implemented by frontier labs or regulatory bodies with access to weights to improve the trustworthiness of capability evaluations.
Abstract:A key development in the cybersecurity evaluations space is the work carried out by Meta, through their CyberSecEval approach. While this work is undoubtedly a useful contribution to a nascent field, there are notable features that limit its utility. Key drawbacks focus on the insecure code detection part of Meta's methodology. We explore these limitations, and use our exploration as a test case for LLM-assisted benchmark analysis.
Abstract:The training data for many Large Language Models (LLMs) is contaminated with test data. This means that public benchmarks used to assess LLMs are compromised, suggesting a performance gap between benchmark scores and actual capabilities. Ideally, a private holdout set could be used to accurately verify scores. Unfortunately, such datasets do not exist for most benchmarks, and post-hoc construction of sufficiently similar datasets is non-trivial. To address these issues, we introduce a systematic methodology for (i) retrospectively constructing a holdout dataset for a target dataset, (ii) demonstrating the statistical indistinguishability of this retro-holdout dataset, and (iii) comparing LLMs on the two datasets to quantify the performance gap due to the dataset's public availability. Applying these methods to TruthfulQA, we construct and release Retro-Misconceptions, on which we evaluate twenty LLMs and find that some have inflated scores by as much as 16 percentage points. Our results demonstrate that public benchmark scores do not always accurately assess model properties, and underscore the importance of improved data practices in the field.