Abstract:Chain-of-thought (CoT) reasoning provides a significant performance uplift to LLMs by enabling planning, exploration, and deliberation of their actions. CoT is also a powerful tool for monitoring the behaviours of these agents: when faithful, they offer interpretations of the model's decision making process, and an early warning sign for dangerous behaviours. However, optimisation pressures placed on the CoT may cause the model to obfuscate reasoning traces, losing this beneficial property. We show that obfuscation can generalise across tasks; models that learn to obfuscate reasoning involving reward hacking (e.g. accessing and utilising leaked information) generalise both the reward hacking behaviour and its obfuscation in CoT to unseen reward hacking settings. Most worryingly, we show that obfuscation of CoT reasoning, and its generalisation across tasks, also follows when we penalise only the model's final actions after closing its CoT. Our findings suggest that current practices of penalising harmful generations may inadvertently lead to a reduction in the broader monitorability of LLMs in unpredictable ways.
Abstract:Pretraining corpora contain extensive discourse about AI systems, yet the causal influence of this discourse on downstream alignment remains poorly understood. If prevailing descriptions of AI behaviour are predominantly negative, LLMs may internalise corresponding behavioural priors, giving rise to self-fulfilling misalignment. This paper provides the first controlled study of this hypothesis by pretraining 6.9B-parameter LLMs with varying amounts of (mis)alignment discourse. We find that discussion of AI contributes to misalignment. Upsampling synthetic training documents about AI misalignment leads to a notable increase in misaligned behaviour. Conversely, upsampling documents about aligned behaviour reduces misalignment scores from 45% to 9%. We consider this evidence of self-fulfilling alignment. These effects are dampened, but persist through post-training. Our findings establish the study of how pretraining data shapes alignment priors, or alignment pretraining, as a complement to post-training. We recommend practitioners pretrain for alignment as well as capabilities. Our models and datasets are available at alignmentpretraining.ai




Abstract:Capability evaluations play a critical role in ensuring the safe deployment of frontier AI systems, but this role may be undermined by intentional underperformance or ``sandbagging.'' We present a novel model-agnostic method for detecting sandbagging behavior using noise injection. Our approach is founded on the observation that introducing Gaussian noise into the weights of models either prompted or fine-tuned to sandbag can considerably improve their performance. We test this technique across a range of model sizes and multiple-choice question benchmarks (MMLU, AI2, WMDP). Our results demonstrate that noise injected sandbagging models show performance improvements compared to standard models. Leveraging this effect, we develop a classifier that consistently identifies sandbagging behavior. Our unsupervised technique can be immediately implemented by frontier labs or regulatory bodies with access to weights to improve the trustworthiness of capability evaluations.