Abstract:Data is a critical resource for Machine Learning (ML), yet working with data remains a key friction point. This paper introduces Croissant, a metadata format for datasets that simplifies how data is used by ML tools and frameworks. Croissant makes datasets more discoverable, portable and interoperable, thereby addressing significant challenges in ML data management and responsible AI. Croissant is already supported by several popular dataset repositories, spanning hundreds of thousands of datasets, ready to be loaded into the most popular ML frameworks.
Abstract:Generating natural language text from graph-structured data is essential for conversational information seeking. Semantic triples derived from knowledge graphs can serve as a valuable source for grounding responses from conversational agents by providing a factual basis for the information they communicate. This is especially relevant in the context of large language models, which offer great potential for conversational interaction but are prone to hallucinating, omitting, or producing conflicting information. In this study, we conduct an empirical analysis of conversational large language models in generating natural language text from semantic triples. We compare four large language models of varying sizes with different prompting techniques. Through a series of benchmark experiments on the WebNLG dataset, we analyze the models' performance and identify the most common issues in the generated predictions. Our findings show that the capabilities of large language models in triple verbalization can be significantly improved through few-shot prompting, post-processing, and efficient fine-tuning techniques, particularly for smaller models that exhibit lower zero-shot performance.
Abstract:Conversational question answering systems often rely on semantic parsing to enable interactive information retrieval, which involves the generation of structured database queries from a natural language input. For information-seeking conversations about facts stored within a knowledge graph, dialogue utterances are transformed into graph queries in a process that is called knowledge-based conversational question answering. This paper evaluates the performance of large language models that have not been explicitly pre-trained on this task. Through a series of experiments on an extensive benchmark dataset, we compare models of varying sizes with different prompting techniques and identify common issue types in the generated output. Our results demonstrate that large language models are capable of generating graph queries from dialogues, with significant improvements achievable through few-shot prompting and fine-tuning techniques, especially for smaller models that exhibit lower zero-shot performance.
Abstract:Data visualizations are common in the real-world. We often use them in data sources such as scientific documents, news articles, textbooks, and social media to summarize key information in a visual form. Charts can also mislead its audience by communicating false information or biasing them towards a specific agenda. Verifying claims against charts is not a straightforward process. It requires analyzing both the text and visual components of the chart, considering characteristics such as colors, positions, and orientations. Moreover, to determine if a claim is supported by the chart content often requires different types of reasoning. To address this challenge, we introduce ChartCheck, a novel dataset for fact-checking against chart images. ChartCheck is the first large-scale dataset with 1.7k real-world charts and 10.5k human-written claims and explanations. We evaluated the dataset on state-of-the-art models and achieved an accuracy of 73.9 in the finetuned setting. Additionally, we identified chart characteristics and reasoning types that challenge the models.
Abstract:Numbers are crucial for various real-world domains such as finance, economics, and science. Thus, understanding and reasoning with numbers are essential skills for language models to solve different tasks. While different numerical benchmarks have been introduced in recent years, they are limited to specific numerical aspects mostly. In this paper, we propose a hierarchical taxonomy for numerical reasoning skills with more than ten reasoning types across four levels: representation, number sense, manipulation, and complex reasoning. We conduct a comprehensive evaluation of state-of-the-art models to identify reasoning challenges specific to them. Henceforth, we develop a diverse set of numerical probes employing a semi-automated approach. We focus on the tabular Natural Language Inference (TNLI) task as a case study and measure models' performance shifts. Our results show that no model consistently excels across all numerical reasoning types. Among the probed models, FlanT5 (few-/zero-shot) and GPT-3.5 (few-shot) demonstrate strong overall numerical reasoning skills compared to other models. Label-flipping probes indicate that models often exploit dataset artifacts to predict the correct labels.
Abstract:In this work, we explore the use of Large Language Models (LLMs) for knowledge engineering tasks in the context of the ISWC 2023 LM-KBC Challenge. For this task, given subject and relation pairs sourced from Wikidata, we utilize pre-trained LLMs to produce the relevant objects in string format and link them to their respective Wikidata QIDs. We developed a pipeline using LLMs for Knowledge Engineering (LLMKE), combining knowledge probing and Wikidata entity mapping. The method achieved a macro-averaged F1-score of 0.701 across the properties, with the scores varying from 1.00 to 0.328. These results demonstrate that the knowledge of LLMs varies significantly depending on the domain and that further experimentation is required to determine the circumstances under which LLMs can be used for automatic Knowledge Base (e.g., Wikidata) completion and correction. The investigation of the results also suggests the promising contribution of LLMs in collaborative knowledge engineering. LLMKE won Track 2 of the challenge. The implementation is available at https://github.com/bohuizhang/LLMKE.
Abstract:Evidence data for automated fact-checking (AFC) can be in multiple modalities such as text, tables, images, audio, or video. While there is increasing interest in using images for AFC, previous works mostly focus on detecting manipulated or fake images. We propose a novel task, chart-based fact-checking, and introduce ChartBERT as the first model for AFC against chart evidence. ChartBERT leverages textual, structural and visual information of charts to determine the veracity of textual claims. For evaluation, we create ChartFC, a new dataset of 15, 886 charts. We systematically evaluate 75 different vision-language (VL) baselines and show that ChartBERT outperforms VL models, achieving 63.8% accuracy. Our results suggest that the task is complex yet feasible, with many challenges ahead.
Abstract:Wikidata is an open knowledge graph created, managed, and maintained collaboratively by a global community of volunteers. As it continues to grow, it faces substantial editor engagement challenges, including acquiring new editors to tackle an increasing workload and retaining existing editors. Experiences from other online communities and peer-production systems, including Wikipedia, suggest that recommending tasks to editors could help with both. Our aim with this paper is to elicit the user requirements for a Wikidata recommendations system. We conduct a mixed-methods study with a thematic analysis of in-depth interviews with 31 Wikidata editors and three Wikimedia managers, complemented by a quantitative analysis of edit records of 3,740 Wikidata editors. The insights gained from the study help us outline design requirements for the Wikidata recommender system. We conclude with a discussion of the implications of this work and directions for future work.
Abstract:Knowledge Graphs are repositories of information that gather data from a multitude of domains and sources in the form of semantic triples, serving as a source of structured data for various crucial applications in the modern web landscape, from Wikipedia infoboxes to search engines. Such graphs mainly serve as secondary sources of information and depend on well-documented and verifiable provenance to ensure their trustworthiness and usability. However, their ability to systematically assess and assure the quality of this provenance, most crucially whether it properly supports the graph's information, relies mainly on manual processes that do not scale with size. ProVe aims at remedying this, consisting of a pipelined approach that automatically verifies whether a Knowledge Graph triple is supported by text extracted from its documented provenance. ProVe is intended to assist information curators and consists of four main steps involving rule-based methods and machine learning models: text extraction, triple verbalisation, sentence selection, and claim verification. ProVe is evaluated on a Wikidata dataset, achieving promising results overall and excellent performance on the binary classification task of detecting support from provenance, with 87.5% accuracy and 82.9% F1-macro on text-rich sources. The evaluation data and scripts used in this paper are available on GitHub and Figshare.
Abstract:In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.