Abstract:Knowledge Graphs (KGs) store human knowledge in the form of entities (nodes) and relations, and are used extensively in various applications. KG embeddings are an effective approach to addressing tasks like knowledge discovery, link prediction, and reasoning. This is often done by allocating and learning embedding tables for all or a subset of the entities. As this scales linearly with the number of entities, learning embedding models in real-world KGs with millions of nodes can be computationally intractable. To address this scalability problem, our model, PathE, only allocates embedding tables for relations (which are typically orders of magnitude fewer than the entities) and requires less than 25% of the parameters of previous parameter efficient methods. Rather than storing entity embeddings, we learn to compute them by leveraging multiple entity-relation paths to contextualise individual entities within triples. Evaluated on four benchmarks, PathE achieves state-of-the-art performance in relation prediction, and remains competitive in link prediction on path-rich KGs while training on consumer-grade hardware. We perform ablation experiments to test our design choices and analyse the sensitivity of the model to key hyper-parameters. PathE is efficient and cost-effective for relationally diverse and well-connected KGs commonly found in real-world applications.
Abstract:In this work, we explore the use of Large Language Models (LLMs) for knowledge engineering tasks in the context of the ISWC 2023 LM-KBC Challenge. For this task, given subject and relation pairs sourced from Wikidata, we utilize pre-trained LLMs to produce the relevant objects in string format and link them to their respective Wikidata QIDs. We developed a pipeline using LLMs for Knowledge Engineering (LLMKE), combining knowledge probing and Wikidata entity mapping. The method achieved a macro-averaged F1-score of 0.701 across the properties, with the scores varying from 1.00 to 0.328. These results demonstrate that the knowledge of LLMs varies significantly depending on the domain and that further experimentation is required to determine the circumstances under which LLMs can be used for automatic Knowledge Base (e.g., Wikidata) completion and correction. The investigation of the results also suggests the promising contribution of LLMs in collaborative knowledge engineering. LLMKE won Track 2 of the challenge. The implementation is available at https://github.com/bohuizhang/LLMKE.