Abstract:The semantic description of music metadata is a key requirement for the creation of music datasets that can be aligned, integrated, and accessed for information retrieval and knowledge discovery. It is nonetheless an open challenge due to the complexity of musical concepts arising from different genres, styles, and periods -- standing to benefit from a lingua franca to accommodate various stakeholders (musicologists, librarians, data engineers, etc.). To initiate this transition, we introduce the Music Meta ontology, a rich and flexible semantic model to describe music metadata related to artists, compositions, performances, recordings, and links. We follow eXtreme Design methodologies and best practices for data engineering, to reflect the perspectives and the requirements of various stakeholders into the design of the model, while leveraging ontology design patterns and accounting for provenance at different levels (claims, links). After presenting the main features of Music Meta, we provide a first evaluation of the model, alignments to other schema (Music Ontology, DOREMUS, Wikidata), and support for data transformation.
Abstract:The annotation of music content is a complex process to represent due to its inherent multifaceted, subjectivity, and interdisciplinary nature. Numerous systems and conventions for annotating music have been developed as independent standards over the past decades. Little has been done to make them interoperable, which jeopardises cross-corpora studies as it requires users to familiarise with a multitude of conventions. Most of these systems lack the semantic expressiveness needed to represent the complexity of the musical language and cannot model multi-modal annotations originating from audio and symbolic sources. In this article, we introduce the Music Annotation Pattern, an Ontology Design Pattern (ODP) to homogenise different annotation systems and to represent several types of musical objects (e.g. chords, patterns, structures). This ODP preserves the semantics of the object's content at different levels and temporal granularity. Moreover, our ODP accounts for multi-modality upfront, to describe annotations derived from different sources, and it is the first to enable the integration of music datasets at a large scale.
Abstract:One of the most important goals of digital humanities is to provide researchers with data and tools for new research questions, either by increasing the scale of scholarly studies, linking existing databases, or improving the accessibility of data. Here, the FAIR principles provide a useful framework as these state that data needs to be: Findable, as they are often scattered among various sources; Accessible, since some might be offline or behind paywalls; Interoperable, thus using standard knowledge representation formats and shared vocabularies; and Reusable, through adequate licensing and permissions. Integrating data from diverse humanities domains is not trivial, research questions such as "was economic wealth equally distributed in the 18th century?", or "what are narratives constructed around disruptive media events?") and preparation phases (e.g. data collection, knowledge organisation, cleaning) of scholars need to be taken into account. In this chapter, we describe the ontologies and tools developed and integrated in the Dutch national project CLARIAH to address these issues across datasets from three fundamental domains or "pillars" of the humanities (linguistics, social and economic history, and media studies) that have paradigmatic data representations (textual corpora, structured data, and multimedia). We summarise the lessons learnt from using such ontologies and tools in these domains from a generalisation and reusability perspective.
Abstract:The Semantic Web is built on top of Knowledge Organization Systems (KOS) (vocabularies, ontologies, concept schemes) that provide a structured, interoperable and distributed access to Linked Data on the Web. The maintenance of these KOS over time has produced a number of KOS version chains: subsequent unique version identifiers to unique states of a KOS. However, the release of new KOS versions pose challenges to both KOS publishers and users. For publishers, updating a KOS is a knowledge intensive task that requires a lot of manual effort, often implying deep deliberation on the set of changes to introduce. For users that link their datasets to these KOS, a new version compromises the validity of their links, often creating ramifications. In this paper we describe a method to automatically detect which parts of a Web KOS are likely to change in a next version, using supervised learning on past versions in the KOS version chain. We use a set of ontology change features to model and predict change in arbitrary Web KOS. We apply our method on 139 varied datasets systematically retrieved from the Semantic Web, obtaining robust results at correctly predicting change. To illustrate the accuracy, genericity and domain independence of the method, we study the relationship between its effectiveness and several characterizations of the evaluated datasets, finding that predictors like the number of versions in a chain and their release frequency have a fundamental impact in predictability of change in Web KOS. Consequently, we argue for adopting a release early, release often philosophy in Web KOS development cycles.