Abstract:Gene expression is a cellular process that plays a fundamental role in human phenotypical variations and diseases. Despite advances of deep learning models for gene expression prediction, recent benchmarks have revealed their inability to learn distal regulatory grammar. Here, we address this challenge by leveraging a pretrained large language model to enhance gene expression prediction. We introduce Genetic sequence Token Alignment (GTA), which aligns genetic sequence features with natural language tokens, allowing for symbolic reasoning of genomic sequence features via the frozen language model. This cross-modal adaptation learns the regulatory grammar and allows us to further incorporate gene-specific human annotations as prompts, enabling in-context learning that is not possible with existing models. Trained on lymphoblastoid cells, GTA was evaluated on cells from the Geuvadis consortium and outperforms state-of-the-art models such as Enformer, achieving a Spearman correlation of 0.65, a 10\% improvement. Additionally, GTA offers improved interpretation of long-range interactions through the identification of the most meaningful sections of the input genetic context. GTA represents a powerful and novel cross-modal approach to gene expression prediction by utilizing a pretrained language model, in a paradigm shift from conventional gene expression models trained only on sequence data.
Abstract:Designing molecules with desirable properties, such as drug-likeliness and high binding affinities towards protein targets, is a challenging problem. In this paper, we propose the Dual-Space Optimization (DSO) method that integrates latent space sampling and data space selection to solve this problem. DSO iteratively updates a latent space generative model and a synthetic dataset in an optimization process that gradually shifts the generative model and the synthetic data towards regions of desired property values. Our generative model takes the form of a Latent Prompt Transformer (LPT) where the latent vector serves as the prompt of a causal transformer. Our extensive experiments demonstrate effectiveness of the proposed method, which sets new performance benchmarks across single-objective, multi-objective and constrained molecule design tasks.
Abstract:Given the complex geometry of white matter streamlines, Autoencoders have been proposed as a dimension-reduction tool to simplify the analysis streamlines in a low-dimensional latent spaces. However, despite these recent successes, the majority of encoder architectures only perform dimension reduction on single streamlines as opposed to a full bundle of streamlines. This is a severe limitation of the encoder architecture that completely disregards the global geometric structure of streamlines at the expense of individual fibers. Moreover, the latent space may not be well structured which leads to doubt into their interpretability. In this paper we propose a novel Differentiable Vector Quantized Variational Autoencoder, which are engineered to ingest entire bundles of streamlines as single data-point and provides reliable trustworthy encodings that can then be later used to analyze streamlines in the latent space. Comparisons with several state of the art Autoencoders demonstrate superior performance in both encoding and synthesis.