Abstract:Interactive voice assistants have been widely used as input interfaces in various scenarios, e.g. on smart homes devices, wearables and on AR devices. Detecting the end of a speech query, i.e. speech end-pointing, is an important task for voice assistants to interact with users. Traditionally, speech end-pointing is based on pure classification methods along with arbitrary binary targets. In this paper, we propose a novel regression-based speech end-pointing model, which enables an end-pointer to adjust its detection behavior based on context of user queries. Specifically, we present a pause modeling method and show its effectiveness for dynamic end-pointing. Based on our experiments with vendor-collected smartphone and wearables speech queries, our strategy shows a better trade-off between endpointing latency and accuracy, compared to the traditional classification-based method. We further discuss the benefits of this model and generalization of the framework in the paper.
Abstract:Detection of common events and scenes from audio is useful for extracting and understanding human contexts in daily life. Prior studies have shown that leveraging knowledge from a relevant domain is beneficial for a target acoustic event detection (AED) process. Inspired by the observation that many human-centered acoustic events in daily life involve voice elements, this paper investigates the potential of transferring high-level voice representations extracted from a public speaker dataset to enrich an AED pipeline. Towards this end, we develop a dual-branch neural network architecture for the joint learning of voice and acoustic features during an AED process and conduct thorough empirical studies to examine the performance on the public AudioSet [1] with different types of inputs. Our main observations are that: 1) Joint learning of audio and voice inputs improves the AED performance (mean average precision) for both a CNN baseline (0.292 vs 0.134 mAP) and a TALNet [2] baseline (0.361 vs 0.351 mAP); 2) Augmenting the extra voice features is critical to maximize the model performance with dual inputs.
Abstract:In this work, a modified neural architecture search method (NAS) based physics-informed deep learning model is presented to solve the groundwater flow problems in porous media. Monte Carlo method based on a randomized spectral representation is first employed to construct a stochastic model for simulation of flow through porous media. The desired hydraulic conductivity fields are assumed to be log-normally distributed with exponential and Gaussian correlations. To analyze the Darcy equation with the random hydraulic conductivity in this case when its intensity of fluctuations is small, the lowest-order perturbation theory is used to reduce the difficulty of calculations, by neglecting the higher-order nonlinear part. To solve the governing equations for groundwater flow problem, we build a modified NAS model based on physics-informed neural networks (PINNs) with transfer learning in this paper that will be able to fit different partial differential equations (PDEs) with less calculation. The performance estimation strategies adopted is constructed from an error estimation model using the method of manufactured solutions. Since the configuration selection of the neural network has a strong influence on the simulation results, we apply sensitivity analysis to obtain the prior knowledge of the PINNs model and narrow down the range of parameters for search space and use hyper-parameter optimization algorithms to further determine the values of the parameters. Further the NAS based PINNs model also saves the weights and biases of the most favorable architectures, which is then used in the fine-tuning process. The proposed NAS model based deep collocation method is verified to be effective and accurate through numerical examples in different dimensions using different manufactured solutions.
Abstract:Obtaining large-scale human-labeled datasets to train acoustic representation models is a very challenging task. On the contrary, we can easily collect data with machine-generated labels. In this work, we propose to exploit machine-generated labels to learn better acoustic representations, based on the synchronization between vision and audio. Firstly, we collect a large-scale video dataset with 15 million samples, which totally last 16,320 hours. Each video is 3 to 5 seconds in length and annotated automatically by publicly available visual and audio classification models. Secondly, we train various classical convolutional neural networks (CNNs) including VGGish, ResNet 50 and Mobilenet v2. We also make several improvements to VGGish and achieve better results. Finally, we transfer our models on three external standard benchmarks for audio classification task, and achieve significant performance boost over the state-of-the-art results. Models and codes are available at: https://github.com/Deeperjia/vgg-like-audio-models.
Abstract:Activity sensing and recognition have been demonstrated to be critical in health care and smart home applications. Comparing to traditional methods such as using accelerometers or gyroscopes for activity recognition, acoustic-based methods can collect rich information of human activities together with the activity context, and therefore are more suitable for recognizing high-level compound activities. However, audio-based activity recognition in practice always suffers from the tedious and time-consuming process of collecting ground truth audio data from individual users. In this paper, we proposed a new mechanism of audio-based activity recognition that is entirely free from user training data by usage of millions of embedding features from general YouTube video sound clips. Based on combination of oversampling and deep learning approaches, our scheme does not require further feature extraction or outliers filtering for implementation. We developed our scheme for recognition of 15 common home-related activities and evaluated its performance under dedicated scenarios and in-the-wild scripted scenarios. In the dedicated recording test, our scheme yielded 81.1% overall accuracy and 80.0% overall F-score for all 15 activities. In the in-the-wild scripted tests, we obtained an averaged top-1 classification accuracy of 64.9% and an averaged top-3 classification accuracy of 80.6% for 4 subjects in actual home environment. Several design considerations including association between dataset labels and target activities, effects of segmentation size and privacy concerns were also discussed in the paper.