Abstract:Adversarial patches, often used to provide physical stealth protection for critical assets and assess perception algorithm robustness, usually neglect the need for visual harmony with the background environment, making them easily noticeable. Moreover, existing methods primarily concentrate on improving attack performance, disregarding the intricate dynamics of adversarial patch elements. In this work, we introduce the Camouflaged Adversarial Pattern Generator (CAPGen), a novel approach that leverages specific base colors from the surrounding environment to produce patches that seamlessly blend with their background for superior visual stealthiness while maintaining robust adversarial performance. We delve into the influence of both patterns (i.e., color-agnostic texture information) and colors on the effectiveness of attacks facilitated by patches, discovering that patterns exert a more pronounced effect on performance than colors. Based on these findings, we propose a rapid generation strategy for adversarial patches. This involves updating the colors of high-performance adversarial patches to align with those of the new environment, ensuring visual stealthiness without compromising adversarial impact. This paper is the first to comprehensively examine the roles played by patterns and colors in the context of adversarial patches.
Abstract:Adversarial attacks in the physical world pose a significant threat to the security of vision-based systems, such as facial recognition and autonomous driving. Existing adversarial patch methods primarily focus on improving attack performance, but they often produce patches that are easily detectable by humans and struggle to achieve environmental consistency, i.e., blending patches into the environment. This paper introduces a novel approach for generating adversarial patches, which addresses both the visual naturalness and environmental consistency of the patches. We propose Prompt-Guided Environmentally Consistent Adversarial Patch (PG-ECAP), a method that aligns the patch with the environment to ensure seamless integration into the environment. The approach leverages diffusion models to generate patches that are both environmental consistency and effective in evading detection. To further enhance the naturalness and consistency, we introduce two alignment losses: Prompt Alignment Loss and Latent Space Alignment Loss, ensuring that the generated patch maintains its adversarial properties while fitting naturally within its environment. Extensive experiments in both digital and physical domains demonstrate that PG-ECAP outperforms existing methods in attack success rate and environmental consistency.
Abstract:Convolutional neural networks excel in histopathological image classification, yet their pixel-level focus hampers explainability. Conversely, emerging graph convolutional networks spotlight cell-level features and medical implications. However, limited by their shallowness and suboptimal use of high-dimensional pixel data, GCNs underperform in multi-class histopathological image classification. To make full use of pixel-level and cell-level features dynamically, we propose an asymmetric co-training framework combining a deep graph convolutional network and a convolutional neural network for multi-class histopathological image classification. To improve the explainability of the entire framework by embedding morphological and topological distribution of cells, we build a 14-layer deep graph convolutional network to handle cell graph data. For the further utilization and dynamic interactions between pixel-level and cell-level information, we also design a co-training strategy to integrate the two asymmetric branches. Notably, we collect a private clinically acquired dataset termed LUAD7C, including seven subtypes of lung adenocarcinoma, which is rare and more challenging. We evaluated our approach on the private LUAD7C and public colorectal cancer datasets, showcasing its superior performance, explainability, and generalizability in multi-class histopathological image classification.
Abstract:In recent years, the adversarial vulnerability of deep neural networks (DNNs) has raised increasing attention. Among all the threat models, no-box attacks are the most practical but extremely challenging since they neither rely on any knowledge of the target model or similar substitute model, nor access the dataset for training a new substitute model. Although a recent method has attempted such an attack in a loose sense, its performance is not good enough and computational overhead of training is expensive. In this paper, we move a step forward and show the existence of a \textbf{training-free} adversarial perturbation under the no-box threat model, which can be successfully used to attack different DNNs in real-time. Motivated by our observation that high-frequency component (HFC) domains in low-level features and plays a crucial role in classification, we attack an image mainly by manipulating its frequency components. Specifically, the perturbation is manipulated by suppression of the original HFC and adding of noisy HFC. We empirically and experimentally analyze the requirements of effective noisy HFC and show that it should be regionally homogeneous, repeating and dense. Extensive experiments on the ImageNet dataset demonstrate the effectiveness of our proposed no-box method. It attacks ten well-known models with a success rate of \textbf{98.13\%} on average, which outperforms state-of-the-art no-box attacks by \textbf{29.39\%}. Furthermore, our method is even competitive to mainstream transfer-based black-box attacks.