Abstract:Convolutional neural networks excel in histopathological image classification, yet their pixel-level focus hampers explainability. Conversely, emerging graph convolutional networks spotlight cell-level features and medical implications. However, limited by their shallowness and suboptimal use of high-dimensional pixel data, GCNs underperform in multi-class histopathological image classification. To make full use of pixel-level and cell-level features dynamically, we propose an asymmetric co-training framework combining a deep graph convolutional network and a convolutional neural network for multi-class histopathological image classification. To improve the explainability of the entire framework by embedding morphological and topological distribution of cells, we build a 14-layer deep graph convolutional network to handle cell graph data. For the further utilization and dynamic interactions between pixel-level and cell-level information, we also design a co-training strategy to integrate the two asymmetric branches. Notably, we collect a private clinically acquired dataset termed LUAD7C, including seven subtypes of lung adenocarcinoma, which is rare and more challenging. We evaluated our approach on the private LUAD7C and public colorectal cancer datasets, showcasing its superior performance, explainability, and generalizability in multi-class histopathological image classification.
Abstract:In recent years, the adversarial vulnerability of deep neural networks (DNNs) has raised increasing attention. Among all the threat models, no-box attacks are the most practical but extremely challenging since they neither rely on any knowledge of the target model or similar substitute model, nor access the dataset for training a new substitute model. Although a recent method has attempted such an attack in a loose sense, its performance is not good enough and computational overhead of training is expensive. In this paper, we move a step forward and show the existence of a \textbf{training-free} adversarial perturbation under the no-box threat model, which can be successfully used to attack different DNNs in real-time. Motivated by our observation that high-frequency component (HFC) domains in low-level features and plays a crucial role in classification, we attack an image mainly by manipulating its frequency components. Specifically, the perturbation is manipulated by suppression of the original HFC and adding of noisy HFC. We empirically and experimentally analyze the requirements of effective noisy HFC and show that it should be regionally homogeneous, repeating and dense. Extensive experiments on the ImageNet dataset demonstrate the effectiveness of our proposed no-box method. It attacks ten well-known models with a success rate of \textbf{98.13\%} on average, which outperforms state-of-the-art no-box attacks by \textbf{29.39\%}. Furthermore, our method is even competitive to mainstream transfer-based black-box attacks.