Abstract:Large language models (LLMs) exhibit remarkable capabilities in natural language processing but face catastrophic forgetting when learning new tasks, where adaptation to a new domain leads to a substantial decline in performance on previous tasks. In this paper, we propose Controlled LoRA (CLoRA), a subspace regularization method on LoRA structure. Aiming to reduce the scale of output change while introduce minimal constraint on model capacity, CLoRA imposes constraint on the direction of updating matrix null space. Experimental results on commonly used LLM finetuning tasks reveal that CLoRA significantly outperforms existing LoRA subsequent methods on both in-domain and outdomain evaluations, highlighting the superority of CLoRA as a effective parameter-efficient finetuning method with catastrophic forgetting mitigating. Further investigation for model parameters indicates that CLoRA effectively balances the trade-off between model capacity and degree of forgetting.
Abstract:Conversational Machine Reading (CMR) requires answering a user's initial question through multi-turn dialogue interactions based on a given document. Although there exist many effective methods, they largely neglected the alignment between the document and the user-provided information, which significantly affects the intermediate decision-making and subsequent follow-up question generation. To address this issue, we propose a pipeline framework that (1) aligns the aforementioned two sides in an explicit way, (2)makes decisions using a lightweight many-to-many entailment reasoning module, and (3) directly generates follow-up questions based on the document and previously asked questions. Our proposed method achieves state-of-the-art in micro-accuracy and ranks the first place on the public leaderboard of the CMR benchmark dataset ShARC.
Abstract:Pre-trained conversation models (PCMs) have achieved promising progress in recent years. However, existing PCMs for Task-oriented dialog (TOD) are insufficient for capturing the sequential nature of the TOD-related tasks, as well as for learning dialog policy information. To alleviate these problems, this paper proposes a task-progressive PCM with two policy-aware pre-training tasks. The model is pre-trained through three stages where TOD-related tasks are progressively employed according to the task logic of the TOD system. A global policy consistency task is designed to capture the multi-turn dialog policy sequential relation, and an act-based contrastive learning task is designed to capture similarities among samples with the same dialog policy. Our model achieves better results on both MultiWOZ and In-Car end-to-end dialog modeling benchmarks with only 18\% parameters and 25\% pre-training data compared to the previous state-of-the-art PCM, GALAXY.
Abstract:This paper presents a novel approach to address the Entity Recognition and Linking Challenge at NLPCC 2015. The task involves extracting named entity mentions from short search queries and linking them to entities within a reference Chinese knowledge base. To tackle this problem, we first expand the existing knowledge base and utilize external knowledge to identify candidate entities, thereby improving the recall rate. Next, we extract features from the candidate entities and utilize Support Vector Regression and Multiple Additive Regression Tree as scoring functions to filter the results. Additionally, we apply rules to further refine the results and enhance precision. Our method is computationally efficient and achieves an F1 score of 0.535.
Abstract:Reinforcement learning has been applied to train the dialog systems in many works. Previous approaches divide the dialog system into multiple modules including DST (dialog state tracking) and DP (dialog policy), and train these modules simultaneously. However, different modules influence each other during training. The errors from DST might misguide the dialog policy, and the system action brings extra difficulties for the DST module. To alleviate this problem, we propose Asynchronous Updating Reinforcement Learning framework (AURL) that updates the DST module and the DP module asynchronously under a cooperative setting. Furthermore, curriculum learning is implemented to address the problem of unbalanced data distribution during reinforcement learning sampling, and multiple user models are introduced to increase the dialog diversity. Results on the public SSD-PHONE dataset show that our method achieves a compelling result with a 31.37% improvement on the dialog success rate. The code is publicly available via https://github.com/shunjiu/AURL.
Abstract:Existing multimodal conversation agents have shown impressive abilities to locate absolute positions or retrieve attributes in simple scenarios, but they fail to perform well when complex relative positions and information alignments are involved, which poses a bottleneck in response quality. In this paper, we propose a Situated Conversation Agent Petrained with Multimodal Questions from INcremental Layout Graph (SPRING) with abilities of reasoning multi-hops spatial relations and connecting them with visual attributes in crowded situated scenarios. Specifically, we design two types of Multimodal Question Answering (MQA) tasks to pretrain the agent. All QA pairs utilized during pretraining are generated from novel Incremental Layout Graphs (ILG). QA pair difficulty labels automatically annotated by ILG are used to promote MQA-based Curriculum Learning. Experimental results verify the SPRING's effectiveness, showing that it significantly outperforms state-of-the-art approaches on both SIMMC 1.0 and SIMMC 2.0 datasets.
Abstract:A slot value might be provided segment by segment over multiple-turn interactions in a dialog, especially for some important information such as phone numbers and names. It is a common phenomenon in daily life, but little attention has been paid to it in previous work. To fill the gap, this paper defines a new task named Sub-Slot based Task-Oriented Dialog (SSTOD) and builds a Chinese dialog dataset SSD for boosting research on SSTOD. The dataset includes a total of 40K dialogs and 500K utterances from four different domains: Chinese names, phone numbers, ID numbers and license plate numbers. The data is well annotated with sub-slot values, slot values, dialog states and actions. We find some new linguistic phenomena and interactive manners in SSTOD which raise critical challenges of building dialog agents for the task. We test three state-of-the-art dialog models on SSTOD and find they cannot handle the task well on any of the four domains. We also investigate an improved model by involving slot knowledge in a plug-in manner. More work should be done to meet the new challenges raised from SSTOD which widely exists in real-life applications. The dataset and code are publicly available via https://github.com/shunjiu/SSTOD.
Abstract:Unlike well-structured text, such as news reports and encyclopedia articles, dialogue content often comes from two or more interlocutors, exchanging information with each other. In such a scenario, the topic of a conversation can vary upon progression and the key information for a certain topic is often scattered across multiple utterances of different speakers, which poses challenges to abstractly summarize dialogues. To capture the various topic information of a conversation and outline salient facts for the captured topics, this work proposes two topic-aware contrastive learning objectives, namely coherence detection and sub-summary generation objectives, which are expected to implicitly model the topic change and handle information scattering challenges for the dialogue summarization task. The proposed contrastive objectives are framed as auxiliary tasks for the primary dialogue summarization task, united via an alternative parameter updating strategy. Extensive experiments on benchmark datasets demonstrate that the proposed simple method significantly outperforms strong baselines and achieves new state-of-the-art performance. The code and trained models are publicly available via \href{https://github.com/Junpliu/ConDigSum}{https://github.com/Junpliu/ConDigSum}.
Abstract:We propose a novel task, Multi-Document Driven Dialogue (MD3), in which an agent can guess the target document that the user is interested in by leading a dialogue. To benchmark progress, we introduce a new dataset of GuessMovie, which contains 16,881 documents, each describing a movie, and associated 13,434 dialogues. Further, we propose the MD3 model. Keeping guessing the target document in mind, it converses with the user conditioned on both document engagement and user feedback. In order to incorporate large-scale external documents into the dialogue, it pretrains a document representation which is sensitive to attributes it talks about an object. Then it tracks dialogue state by detecting evolvement of document belief and attribute belief, and finally optimizes dialogue policy in principle of entropy decreasing and reward increasing, which is expected to successfully guess the user's target in a minimum number of turns. Experiments show that our method significantly outperforms several strong baseline methods and is very close to human's performance.
Abstract:A major challenge of multi-label text classification (MLTC) is to stimulatingly exploit possible label differences and label correlations. In this paper, we tackle this challenge by developing Label-Wise Pre-Training (LW-PT) method to get a document representation with label-aware information. The basic idea is that, a multi-label document can be represented as a combination of multiple label-wise representations, and that, correlated labels always cooccur in the same or similar documents. LW-PT implements this idea by constructing label-wise document classification tasks and trains label-wise document encoders. Finally, the pre-trained label-wise encoder is fine-tuned with the downstream MLTC task. Extensive experimental results validate that the proposed method has significant advantages over the previous state-of-the-art models and is able to discover reasonable label relationship. The code is released to facilitate other researchers.