Abstract:What's the most accurate 3D model of your face you can obtain while sitting at your desk? We attempt to answer this question in our work. High fidelity face reconstructions have so far been limited to either studio settings or through expensive 3D scanners. On the other hand, unconstrained reconstruction methods are typically limited by low-capacity models. Our method reconstructs accurate face geometry of a subject using a video shot from a smartphone in an unconstrained environment. Our approach takes advantage of recent advances in visual SLAM, keypoint detection, and object detection to improve accuracy and robustness. By not being constrained to a model subspace, our reconstructed meshes capture important details while being robust to noise and being topologically consistent. Our evaluations show that our method outperforms current single and multi-view baselines by a significant margin, both in terms of geometric accuracy and in capturing person-specific details important for making realistic looking models.
Abstract:Segmenting salient objects in an image is an important vision task with ubiquitous applications. The problem becomes more challenging in the presence of a cluttered and textured background, low resolution and/or low contrast images. Even though existing algorithms perform well in segmenting most of the object(s) of interest, they often end up segmenting false positives due to resembling salient objects in the background. In this work, we tackle this problem by iteratively attending to image patches in a recurrent fashion and subsequently enhancing the predicted segmentation mask. Saliency features are estimated independently for every image patch, which are further combined using an aggregation strategy based on a Convolutional Gated Recurrent Unit (ConvGRU) network. The proposed approach works in an end-to-end manner, removing background noise and false positives incrementally. Through extensive evaluation on various benchmark datasets, we show superior performance to the existing approaches without any post-processing.
Abstract:Supervised deep learning methods have shown promising results for the task of monocular depth estimation; but acquiring ground truth is costly, and prone to noise as well as inaccuracies. While synthetic datasets have been used to circumvent above problems, the resultant models do not generalize well to natural scenes due to the inherent domain shift. Recent adversarial approaches for domain adaption have performed well in mitigating the differences between the source and target domains. But these methods are mostly limited to a classification setup and do not scale well for fully-convolutional architectures. In this work, we propose AdaDepth - an unsupervised domain adaptation strategy for the pixel-wise regression task of monocular depth estimation. The proposed approach is devoid of above limitations through a) adversarial learning and b) explicit imposition of content consistency on the adapted target representation. Our unsupervised approach performs competitively with other established approaches on depth estimation tasks and achieves state-of-the-art results in a semi-supervised setting.
Abstract:When crowdsourcing systems are used in combination with machine inference systems in the real world, they benefit the most when the machine system is deeply integrated with the crowd workers. However, if researchers wish to integrate the crowd with "off-the-shelf" machine classifiers, this deep integration is not always possible. This work explores two strategies to increase accuracy and decrease cost under this setting. First, we show that reordering tasks presented to the human can create a significant accuracy improvement. Further, we show that greedily choosing parameters to maximize machine accuracy is sub-optimal, and joint optimization of the combined system improves performance.