Abstract:Large-scale data collection is essential for developing personalized training data, mitigating the shortage of training data, and fine-tuning specialized models. However, creating high-quality datasets quickly and accurately remains a challenge due to annotation errors, the substantial time and costs associated with human labor. To address these issues, we propose Automatic Dataset Construction (ADC), an innovative methodology that automates dataset creation with negligible cost and high efficiency. Taking the image classification task as a starting point, ADC leverages LLMs for the detailed class design and code generation to collect relevant samples via search engines, significantly reducing the need for manual annotation and speeding up the data generation process. Despite these advantages, ADC also encounters real-world challenges such as label errors (label noise) and imbalanced data distributions (label bias). We provide open-source software that incorporates existing methods for label error detection, robust learning under noisy and biased data, ensuring a higher-quality training data and more robust model training procedure. Furthermore, we design three benchmark datasets focused on label noise detection, label noise learning, and class-imbalanced learning. These datasets are vital because there are few existing datasets specifically for label noise detection, despite its importance. Finally, we evaluate the performance of existing popular methods on these datasets, thereby facilitating further research in the field.
Abstract:This paper investigates how to efficiently deploy transformer-based neural networks on edge devices. Recent methods reduce the latency of transformer neural networks by removing or merging tokens, with small accuracy degradation. However, these methods are not designed with edge device deployment in mind, and do not leverage information about the hardware characteristics to improve efficiency. First, we show that the relationship between latency and workload size is governed by the GPU tail-effect. This relationship is used to create a token pruning schedule tailored for a pre-trained model and device pair. Second, we demonstrate a training-free token pruning method utilizing this relationship. This method achieves accuracy-latency trade-offs in a hardware aware manner. We show that for single batch inference, other methods may actually increase latency by 18.6-30.3% with respect to baseline, while we can reduce it by 9%. For similar latency (within 5.2%) across devices we achieve 78.6%-84.5% ImageNet1K accuracy, while the state-of-the-art, Token Merging, achieves 45.8%-85.4%.
Abstract:Vortices are studied in various scientific disciplines, offering insights into fluid flow behavior. Visualizing the boundary of vortices is crucial for understanding flow phenomena and detecting flow irregularities. This paper addresses the challenge of accurately extracting vortex boundaries using deep learning techniques. While existing methods primarily train on velocity components, we propose a novel approach incorporating particle trajectories (streamlines or pathlines) into the learning process. By leveraging the regional/local characteristics of the flow field captured by streamlines or pathlines, our methodology aims to enhance the accuracy of vortex boundary extraction.
Abstract:We present SplatFace, a novel Gaussian splatting framework designed for 3D human face reconstruction without reliance on accurate pre-determined geometry. Our method is designed to simultaneously deliver both high-quality novel view rendering and accurate 3D mesh reconstructions. We incorporate a generic 3D Morphable Model (3DMM) to provide a surface geometric structure, making it possible to reconstruct faces with a limited set of input images. We introduce a joint optimization strategy that refines both the Gaussians and the morphable surface through a synergistic non-rigid alignment process. A novel distance metric, splat-to-surface, is proposed to improve alignment by considering both the Gaussian position and covariance. The surface information is also utilized to incorporate a world-space densification process, resulting in superior reconstruction quality. Our experimental analysis demonstrates that the proposed method is competitive with both other Gaussian splatting techniques in novel view synthesis and other 3D reconstruction methods in producing 3D face meshes with high geometric precision.
Abstract:In the rapidly evolving landscape of artificial intelligence (AI), the collaboration between human intelligence and AI systems, known as Human-AI (HAI) Teaming, has emerged as a cornerstone for advancing problem-solving and decision-making processes. The advent of Large Pre-trained Models (LPtM) has significantly transformed this landscape, offering unprecedented capabilities by leveraging vast amounts of data to understand and predict complex patterns. This paper surveys the pivotal integration of LPtMs with HAI, emphasizing how these models enhance collaborative intelligence beyond traditional approaches. It examines the synergistic potential of LPtMs in augmenting human capabilities, discussing this collaboration for AI model improvements, effective teaming, ethical considerations, and their broad applied implications in various sectors. Through this exploration, the study sheds light on the transformative impact of LPtM-enhanced HAI Teaming, providing insights for future research, policy development, and strategic implementations aimed at harnessing the full potential of this collaboration for research and societal benefit.
Abstract:This study critically evaluates the mathematical proficiency of OpenAI's language model, ChatGPT, by juxtaposing its default computational capabilities against the efficiency of three prescriptive methods: strategic prompting, persona implementation, and the Chain of Thought approach. The evaluation harnessed the diverse and extensive problem sets from the MATH, GSM8K, and MMLU data-sets, which encompassing a broad spectrum of mathematical conundrums and levels of complexity. A sophisticated grading script was designed to determine the efficacy of these interventions in enhancing the model's mathematical precision. Contrary to expectations, our empirical analysis revealed that none of the trialed methods substantially improved ChatGPT's baseline performance. In some cases, these interventions inadvertently disrupted the model's response generation. This investigation concluded that while the pursuit of innovative strategies for augmenting language model performance remains crucial, the specific methods examined within this study did not induce significant improvements in ChatGPT's computational aptitude. These findings underscore the importance of further comprehensive research and exploration of novel techniques to enhance the precision and dependability of such models across diverse domains.
Abstract:Existing methods for 3D face reconstruction from a few casually captured images employ deep learning based models along with a 3D Morphable Model(3DMM) as face geometry prior. Structure From Motion(SFM), followed by Multi-View Stereo (MVS), on the other hand, uses dozens of high-resolution images to reconstruct accurate 3D faces.However, it produces noisy and stretched-out results with only two views available. In this paper, taking inspiration from both these methods, we propose an end-to-end pipeline that disjointly solves for pose and shape to make the optimization stable and accurate. We use a face shape prior to estimate face pose and use stereo matching followed by a 3DMM to solve for the shape. The proposed method achieves end-to-end topological consistency, enables iterative face pose refinement procedure, and show remarkable improvement on both quantitative and qualitative results over existing state-of-the-art methods.
Abstract:Currently, digital avatars can be created manually using human images as reference. Systems such as Bitmoji are excellent producers of detailed avatar designs, with hundreds of choices for customization. A supervised learning model could be trained to generate avatars automatically, but the hundreds of possible options create difficulty in securing non-noisy data to train a model. As a solution, we train a model to produce avatars from human images using tag-based annotations. This method provides better annotator agreement, leading to less noisy data and higher quality model predictions. Our contribution is an application of tag-based annotation to train a model for avatar face creation. We design tags for 3 different facial facial features offered by Bitmoji, and train a model using tag-based annotation to predict the nose.
Abstract:Trained computer vision models are assumed to solve vision tasks by imitating human behavior learned from training labels. Most efforts in recent vision research focus on measuring the model task performance using standardized benchmarks. Limited work has been done to understand the perceptual difference between humans and machines. To fill this gap, our study first quantifies and analyzes the statistical distributions of mistakes from the two sources. We then explore human vs. machine expertise after ranking tasks by difficulty levels. Even when humans and machines have similar overall accuracies, the distribution of answers may vary. Leveraging the perceptual difference between humans and machines, we empirically demonstrate a post-hoc human-machine collaboration that outperforms humans or machines alone.
Abstract:We present a hybrid machine learning and flow analysis feature detection method, RipViz, to extract rip currents from stationary videos. Rip currents are dangerous strong currents that can drag beachgoers out to sea. Most people are either unaware of them or do not know what they look like. In some instances, even trained personnel such as lifeguards have difficulty identifying them. RipViz produces a simple, easy to understand visualization of rip location overlaid on the source video. With RipViz, we first obtain an unsteady 2D vector field from the stationary video using optical flow. Movement at each pixel is analyzed over time. At each seed point, sequences of short pathlines, rather a single long pathline, are traced across the frames of the video to better capture the quasi-periodic flow behavior of wave activity. Because of the motion on the beach, the surf zone, and the surrounding areas, these pathlines may still appear very cluttered and incomprehensible. Furthermore, lay audiences are not familiar with pathlines and may not know how to interpret them. To address this, we treat rip currents as a flow anomaly in an otherwise normal flow. To learn about the normal flow behavior, we train an LSTM autoencoder with pathline sequences from normal ocean, foreground, and background movements. During test time, we use the trained LSTM autoencoder to detect anomalous pathlines (i.e., those in the rip zone). The origination points of such anomalous pathlines, over the course of the video, are then presented as points within the rip zone. RipViz is fully automated and does not require user input. Feedback from domain expert suggests that RipViz has the potential for wider use.