Abstract:3D Gaussian splatting has surpassed neural radiance field methods in novel view synthesis by achieving lower computational costs and real-time high-quality rendering. Although it produces a high-quality rendering with a lot of input views, its performance drops significantly when only a few views are available. In this work, we address this by proposing a depth-aware Gaussian splatting method for few-shot novel view synthesis. We use monocular depth prediction as a prior, along with a scale-invariant depth loss, to constrain the 3D shape under just a few input views. We also model color using lower-order spherical harmonics to avoid overfitting. Further, we observe that removing splats with lower opacity periodically, as performed in the original work, leads to a very sparse point cloud and, hence, a lower-quality rendering. To mitigate this, we retain all the splats, leading to a better reconstruction in a few view settings. Experimental results show that our method outperforms the traditional 3D Gaussian splatting methods by achieving improvements of 10.5% in peak signal-to-noise ratio, 6% in structural similarity index, and 14.1% in perceptual similarity, thereby validating the effectiveness of our approach. The code will be made available at: https://github.com/raja-kumar/depth-aware-3DGS
Abstract:In the rapidly evolving landscape of artificial intelligence (AI), the collaboration between human intelligence and AI systems, known as Human-AI (HAI) Teaming, has emerged as a cornerstone for advancing problem-solving and decision-making processes. The advent of Large Pre-trained Models (LPtM) has significantly transformed this landscape, offering unprecedented capabilities by leveraging vast amounts of data to understand and predict complex patterns. This paper surveys the pivotal integration of LPtMs with HAI, emphasizing how these models enhance collaborative intelligence beyond traditional approaches. It examines the synergistic potential of LPtMs in augmenting human capabilities, discussing this collaboration for AI model improvements, effective teaming, ethical considerations, and their broad applied implications in various sectors. Through this exploration, the study sheds light on the transformative impact of LPtM-enhanced HAI Teaming, providing insights for future research, policy development, and strategic implementations aimed at harnessing the full potential of this collaboration for research and societal benefit.