Microsoft
Abstract:Recent threat reports highlight that email remains the top vector for delivering malware to endpoints. Despite these statistics, detecting malicious email attachments and URLs often neglects semantic cues linguistic features and contextual clues. Our study employs BERTopic unsupervised topic modeling to identify common semantics and themes embedded in email to deliver malicious attachments and call-to-action URLs. We preprocess emails by extracting and sanitizing content and employ multilingual embedding models like BGE-M3 for dense representations, which clustering algorithms(HDBSCAN and OPTICS) use to group emails by semantic similarity. Phi3-Mini-4K-Instruct facilitates semantic and hLDA aid in thematic analysis to understand threat actor patterns. Our research will evaluate and compare different clustering algorithms on topic quantity, coherence, and diversity metrics, concluding with insights into the semantics and topics commonly used by threat actors to deliver malicious attachments and URLs, a significant contribution to the field of threat detection.
Abstract:Federated Learning (FL) has emerged as a leading paradigm for decentralized, privacy preserving machine learning training. However, recent research on gradient inversion attacks (GIAs) have shown that gradient updates in FL can leak information on private training samples. While existing surveys on GIAs have focused on the honest-but-curious server threat model, there is a dearth of research categorizing attacks under the realistic and far more privacy-infringing cases of malicious servers and clients. In this paper, we present a survey and novel taxonomy of GIAs that emphasize FL threat models, particularly that of malicious servers and clients. We first formally define GIAs and contrast conventional attacks with the malicious attacker. We then summarize existing honest-but-curious attack strategies, corresponding defenses, and evaluation metrics. Critically, we dive into attacks with malicious servers and clients to highlight how they break existing FL defenses, focusing specifically on reconstruction methods, target model architectures, target data, and evaluation metrics. Lastly, we discuss open problems and future research directions.
Abstract:Neural radiance fields (NeRFs) show potential for transforming images captured worldwide into immersive 3D visual experiences. However, most of this captured visual data remains siloed in our camera rolls as these images contain personal details. Even if made public, the problem of learning 3D representations of billions of scenes captured daily in a centralized manner is computationally intractable. Our approach, DecentNeRF, is the first attempt at decentralized, crowd-sourced NeRFs that require $\sim 10^4\times$ less server computing for a scene than a centralized approach. Instead of sending the raw data, our approach requires users to send a 3D representation, distributing the high computation cost of training centralized NeRFs between the users. It learns photorealistic scene representations by decomposing users' 3D views into personal and global NeRFs and a novel optimally weighted aggregation of only the latter. We validate the advantage of our approach to learn NeRFs with photorealism and minimal server computation cost on structured synthetic and real-world photo tourism datasets. We further analyze how secure aggregation of global NeRFs in DecentNeRF minimizes the undesired reconstruction of personal content by the server.
Abstract:Pretrained Language Models (PLMs) have advanced Natural Language Processing (NLP) tasks significantly, but finetuning PLMs on low-resource datasets poses significant challenges such as instability and overfitting. Previous methods tackle these issues by finetuning a strategically chosen subnetwork on a downstream task, while keeping the remaining weights fixed to the pretrained weights. However, they rely on a suboptimal criteria for sub-network selection, leading to suboptimal solutions. To address these limitations, we propose a regularization method based on attention-guided weight mixup for finetuning PLMs. Our approach represents each network weight as a mixup of task-specific weight and pretrained weight, controlled by a learnable attention parameter, providing finer control over sub-network selection. Furthermore, we employ a bi-level optimization (BLO) based framework on two separate splits of the training dataset, improving generalization and combating overfitting. We validate the efficacy of our proposed method through extensive experiments, demonstrating its superiority over previous methods, particularly in the context of finetuning PLMs on low-resource datasets.
Abstract:Federated Learning (FL) enables collaborative optimization of machine learning models across decentralized data by aggregating model parameters. Our approach extends this concept by aggregating "knowledge" derived from models, instead of model parameters. We present a novel framework called CoDream, where clients collaboratively optimize randomly initialized data using federated optimization in the input data space, similar to how randomly initialized model parameters are optimized in FL. Our key insight is that jointly optimizing this data can effectively capture the properties of the global data distribution. Sharing knowledge in data space offers numerous benefits: (1) model-agnostic collaborative learning, i.e., different clients can have different model architectures; (2) communication that is independent of the model size, eliminating scalability concerns with model parameters; (3) compatibility with secure aggregation, thus preserving the privacy benefits of federated learning; (4) allowing of adaptive optimization of knowledge shared for personalized learning. We empirically validate CoDream on standard FL tasks, demonstrating competitive performance despite not sharing model parameters. Our code: https://mitmedialab.github.io/codream.github.io/
Abstract:Information Extraction (IE) from document images is challenging due to the high variability of layout formats. Deep models such as LayoutLM and BROS have been proposed to address this problem and have shown promising results. However, they still require a large amount of field-level annotations for training these models. Other approaches using rule-based methods have also been proposed based on the understanding of the layout and semantics of a form such as geometric position, or type of the fields, etc. In this work, we propose a novel approach, EIGEN (Expert-Informed Joint Learning aGgrEatioN), which combines rule-based methods with deep learning models using data programming approaches to circumvent the requirement of annotation of large amounts of training data. Specifically, EIGEN consolidates weak labels induced from multiple heuristics through generative models and use them along with a small number of annotated labels to jointly train a deep model. In our framework, we propose the use of labeling functions that include incorporating contextual information thus capturing the visual and language context of a word for accurate categorization. We empirically show that our EIGEN framework can significantly improve the performance of state-of-the-art deep models with the availability of very few labeled data instances. The source code is available at https://github.com/ayushayush591/EIGEN-High-Fidelity-Extraction-Document-Images.
Abstract:Privacy-preserving machine learning has become a key conundrum for multi-party artificial intelligence. Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device). In FL, each data holder trains a model locally and releases it to a central server for aggregation. In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation). While relevant in several settings, both of these schemes have a high communication cost, rely on server-level computation algorithms and do not allow for tunable levels of collaboration. In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss (contrastive w.r.t. the labels). The goal is to ensure that the participants learn similar features on similar classes without sharing their input data. To do so, each client releases averaged last hidden layer activations of similar labels to a central server that only acts as a relay (i.e., is not involved in the training or aggregation of the models). Then, the clients download these last layer activations (feature representations) of the ensemble of users and distill their knowledge in their personal model using a contrastive objective. For cross-device applications (i.e., small local datasets and limited computational capacity), this approach increases the utility of the models compared to independent learning and other federated knowledge distillation (FD) schemes, is communication efficient and is scalable with the number of clients. We prove theoretically that our framework is well-posed, and we benchmark its performance against standard FD and FL on various datasets using different model architectures.
Abstract:Point clouds are an increasingly ubiquitous input modality and the raw signal can be efficiently processed with recent progress in deep learning. This signal may, often inadvertently, capture sensitive information that can leak semantic and geometric properties of the scene which the data owner does not want to share. The goal of this work is to protect sensitive information when learning from point clouds; by censoring the sensitive information before the point cloud is released for downstream tasks. Specifically, we focus on preserving utility for perception tasks while mitigating attribute leakage attacks. The key motivating insight is to leverage the localized saliency of perception tasks on point clouds to provide good privacy-utility trade-offs. We realize this through a mechanism called Censoring by Noisy Sampling (CBNS), which is composed of two modules: i) Invariant Sampler: a differentiable point-cloud sampler which learns to remove points invariant to utility and ii) Noisy Distorter: which learns to distort sampled points to decouple the sensitive information from utility, and mitigate privacy leakage. We validate the effectiveness of CBNS through extensive comparisons with state-of-the-art baselines and sensitivity analyses of key design choices. Results show that CBNS achieves superior privacy-utility trade-offs on multiple datasets.
Abstract:We propose sanitizer, a framework for secure and task-agnostic data release. While releasing datasets continues to make a big impact in various applications of computer vision, its impact is mostly realized when data sharing is not inhibited by privacy concerns. We alleviate these concerns by sanitizing datasets in a two-stage process. First, we introduce a global decoupling stage for decomposing raw data into sensitive and non-sensitive latent representations. Secondly, we design a local sampling stage to synthetically generate sensitive information with differential privacy and merge it with non-sensitive latent features to create a useful representation while preserving the privacy. This newly formed latent information is a task-agnostic representation of the original dataset with anonymized sensitive information. While most algorithms sanitize data in a task-dependent manner, a few task-agnostic sanitization techniques sanitize data by censoring sensitive information. In this work, we show that a better privacy-utility trade-off is achieved if sensitive information can be synthesized privately. We validate the effectiveness of the sanitizer by outperforming state-of-the-art baselines on the existing benchmark tasks and demonstrating tasks that are not possible using existing techniques.
Abstract:Lowering costs by driving high utilization across deep learning workloads is a crucial lever for cloud providers. We present Singularity, Microsoft's globally distributed scheduling service for highly-efficient and reliable execution of deep learning training and inference workloads. At the heart of Singularity is a novel, workload-aware scheduler that can transparently preempt and elastically scale deep learning workloads to drive high utilization without impacting their correctness or performance, across a global fleet of AI accelerators (e.g., GPUs, FPGAs). All jobs in Singularity are preemptable, migratable, and dynamically resizable (elastic) by default: a live job can be dynamically and transparently (a) preempted and migrated to a different set of nodes, cluster, data center or a region and resumed exactly from the point where the execution was preempted, and (b) resized (i.e., elastically scaled-up/down) on a varying set of accelerators of a given type. Our mechanisms are transparent in that they do not require the user to make any changes to their code or require using any custom libraries that may limit flexibility. Additionally, our approach significantly improves the reliability of deep learning workloads. We show that the resulting efficiency and reliability gains with Singularity are achieved with negligible impact on the steady-state performance. Finally, our design approach is agnostic of DNN architectures and handles a variety of parallelism strategies (e.g., data/pipeline/model parallelism).