Abstract:In the dynamic landscape of technology, the convergence of Artificial Intelligence (AI) and Operating Systems (OS) has emerged as a pivotal arena for innovation. Our exploration focuses on the symbiotic relationship between AI and OS, emphasizing how AI-driven tools enhance OS performance, security, and efficiency, while OS advancements facilitate more sophisticated AI applications. We delve into various AI techniques employed to optimize OS functionalities, including memory management, process scheduling, and intrusion detection. Simultaneously, we analyze the role of OS in providing essential services and infrastructure that enable effective AI application execution, from resource allocation to data processing. The article also addresses challenges and future directions in this domain, emphasizing the imperative of secure and efficient AI integration within OS frameworks. By examining case studies and recent developments, our review provides a comprehensive overview of the current state of AI-OS integration, underscoring its significance in shaping the next generation of computing technologies. Finally, we explore the promising prospects of Intelligent OSes, considering not only how innovative OS architectures will pave the way for groundbreaking opportunities but also how AI will significantly contribute to advancing these next-generation OSs.
Abstract:Computing is a critical driving force in the development of human civilization. In recent years, we have witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional computing and promoting digital revolution in the era of big data, artificial intelligence and internet-of-things with new computing theories, architectures, methods, systems, and applications. Intelligent computing has greatly broadened the scope of computing, extending it from traditional computing on data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human-computer fusion intelligence. Intelligence and computing have undergone paths of different evolution and development for a long time but have become increasingly intertwined in recent years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing. Intelligent computing is still in its infancy and an abundance of innovations in the theories, systems, and applications of intelligent computing are expected to occur soon. We present the first comprehensive survey of literature on intelligent computing, covering its theory fundamentals, the technological fusion of intelligence and computing, important applications, challenges, and future perspectives. We believe that this survey is highly timely and will provide a comprehensive reference and cast valuable insights into intelligent computing for academic and industrial researchers and practitioners.
Abstract:Recent research has shown that it is challenging to detect out-of-distribution (OOD) data in deep generative models including flow-based models and variational autoencoders (VAEs). In this paper, we prove a theorem that, for a well-trained flow-based model, the distance between the distribution of representations of an OOD dataset and prior can be large enough, as long as the distance between the distributions of the training dataset and the OOD dataset is large enough. Furthermore, our observation shows that, for flow-based model and VAE with factorized prior, the representations of OOD datasets are more correlated than that of the training dataset. Based on our theorem and observation, we propose detecting OOD data according to the total correlation of representations in flow-based model and VAE. Experimental results show that our method can achieve nearly 100\% AUROC for all the widely used benchmarks and has robustness against data manipulation. While the state-of-the-art method performs not better than random guessing for challenging problems and can be fooled by data manipulation in almost all cases.