Abstract:Large Language Models (LLMs) have garnered significant attention for their impressive general-purpose capabilities. For applications requiring intricate domain knowledge, Retrieval-Augmented Generation (RAG) has shown a distinct advantage in incorporating domain-specific information into LLMs. However, existing RAG research has not fully addressed the challenges of Multiple Choice Question Answering (MCQA) in telecommunications, particularly in terms of retrieval quality and mitigating hallucinations. To tackle these challenges, we propose a novel first token probability guided RAG framework. This framework leverages confidence scores to optimize key hyperparameters, such as chunk number and chunk window size, while dynamically adjusting the context. Our method starts by retrieving the most relevant chunks and generates a single token as the potential answer. The probabilities of all options are then normalized to serve as confidence scores, which guide the dynamic adjustment of the context. By iteratively optimizing the hyperparameters based on these confidence scores, we can continuously improve RAG performance. We conducted experiments to validate the effectiveness of our framework, demonstrating its potential to enhance accuracy in domain-specific MCQA tasks.
Abstract:Channel State Information (CSI) is the cornerstone in both wireless communication and sensing systems. In wireless communication systems, CSI provides essential insights into channel conditions, enabling system optimizations like channel compensation and dynamic resource allocation. However, the high computational complexity of CSI estimation algorithms necessitates the development of fast deep learning methods for CSI prediction. In wireless sensing systems, CSI can be leveraged to infer environmental changes, facilitating various functions, including gesture recognition and people identification. Deep learning methods have demonstrated significant advantages over model-based approaches in these fine-grained CSI classification tasks, particularly when classes vary across different scenarios. However, a major challenge in training deep learning networks for wireless systems is the limited availability of data, further complicated by the diverse formats of many public datasets, which hinder integration. Additionally, collecting CSI data can be resource-intensive, requiring considerable time and manpower. To address these challenges, we propose CSI-BERT2 for CSI prediction and classification tasks, effectively utilizing limited data through a pre-training and fine-tuning approach. Building on CSI-BERT1, we enhance the model architecture by introducing an Adaptive Re-Weighting Layer (ARL) and a Multi-Layer Perceptron (MLP) to better capture sub-carrier and timestamp information, effectively addressing the permutation-invariance problem. Furthermore, we propose a Mask Prediction Model (MPM) fine-tuning method to improve the model's adaptability for CSI prediction tasks. Experimental results demonstrate that CSI-BERT2 achieves state-of-the-art performance across all tasks.
Abstract:As a key technology in Integrated Sensing and Communications (ISAC), Wi-Fi sensing has gained widespread application in various settings such as homes, offices, and public spaces. By analyzing the patterns of Channel State Information (CSI), we can obtain information about people's actions for tasks like person identification, gesture recognition, and fall detection. However, the CSI is heavily influenced by the environment, such that even minor environmental changes can significantly alter the CSI patterns. This will cause the performance deterioration and even failure when applying the Wi-Fi sensing model trained in one environment to another. To address this problem, we introduce a K-Nearest Neighbors Maximum Mean Discrepancy (KNN-MMD) model, a few-shot method for cross-domain Wi-Fi sensing. We propose a local distribution alignment method within each category, which outperforms traditional Domain Adaptation (DA) methods based on global alignment. Besides, our method can determine when to stop training, which cannot be realized by most DA methods. As a result, our method is more stable and can be better used in practice. The effectiveness of our method are evaluated in several cross-domain Wi-Fi sensing tasks, including gesture recognition, person identification, fall detection, and action recognition, using both a public dataset and a self-collected dataset. In one-shot scenario, our method achieves accuracy of 93.26%, 81.84%, 77.62%, and 75.30% in the four tasks respectively. To facilitate future research, we will make our code and dataset publicly available upon publication.
Abstract:Wi-Fi localization and tracking has shown immense potential due to its privacy-friendliness, wide coverage, permeability, independence from lighting conditions, and low cost. Current methods can be broadly categorized as model-based and data-driven approaches, where data-driven methods show better performance and have less requirement for specialized devices, but struggle with limited datasets for training. Due to limitations in current data collection methods, most datasets only provide coarse-grained ground truth (GT) or limited amount of label points, which greatly hinders the development of data-driven methods. Even though lidar can provide accurate GT, their high cost makes them inaccessible to many users. To address these challenges, we propose LoFi, a vision-aided label generator for Wi-Fi localization and tracking, which can generate ground truth position coordinates solely based on 2D images. The easy and quick data collection method also helps data-driven based methods deploy in practice, since Wi-Fi is a low-generalization modality and when using relevant methods, it always requires fine-tuning the model using newly collected data. Based on our method, we also collect a Wi-Fi tracking and localization dataset using ESP32-S3 and a webcam. To facilitate future research, we will make our code and dataset publicly available upon publication.
Abstract:Neuro-symbolic artificial intelligence (AI) excels at learning from noisy and generalized patterns, conducting logical inferences, and providing interpretable reasoning. Comprising a 'neuro' component for feature extraction and a 'symbolic' component for decision-making, neuro-symbolic AI has yet to fully benefit from efficient hardware accelerators. Additionally, current hardware struggles to accommodate applications requiring dynamic resource allocation between these two components. To address these challenges-and mitigate the typical data-transfer bottleneck of classical Von Neumann architectures-we propose a ferroelectric charge-domain compute-in-memory (CiM) array as the foundational processing element for neuro-symbolic AI. This array seamlessly handles both the critical multiply-accumulate (MAC) operations of the 'neuro' workload and the parallel associative search operations of the 'symbolic' workload. To enable this approach, we introduce an innovative 1FeFET-1C cell, combining a ferroelectric field-effect transistor (FeFET) with a capacitor. This design, overcomes the destructive sensing limitations of DRAM in CiM applications, while capable of capitalizing decades of DRAM expertise with a similar cell structure as DRAM, achieves high immunity against FeFET variation-crucial for neuro-symbolic AI-and demonstrates superior energy efficiency. The functionalities of our design have been successfully validated through SPICE simulations and prototype fabrication and testing. Our hardware platform has been benchmarked in executing typical neuro-symbolic AI reasoning tasks, showing over 2x improvement in latency and 1000x improvement in energy efficiency compared to GPU-based implementations.
Abstract:The impressive performance of ChatGPT and other foundation-model-based products in human language understanding has prompted both academia and industry to explore how these models can be tailored for specific industries and application scenarios. This process, known as the customization of domain-specific foundation models, addresses the limitations of general-purpose models, which may not fully capture the unique patterns and requirements of domain-specific data. Despite its importance, there is a notable lack of comprehensive overview papers on building domain-specific foundation models, while numerous resources exist for general-purpose models. To bridge this gap, this article provides a timely and thorough overview of the methodology for customizing domain-specific foundation models. It introduces basic concepts, outlines the general architecture, and surveys key methods for constructing domain-specific models. Furthermore, the article discusses various domains that can benefit from these specialized models and highlights the challenges ahead. Through this overview, we aim to offer valuable guidance and reference for researchers and practitioners from diverse fields to develop their own customized foundation models.
Abstract:In recent years, Wi-Fi sensing has garnered significant attention due to its numerous benefits, such as privacy protection, low cost, and penetration ability. Extensive research has been conducted in this field, focusing on areas such as gesture recognition, people identification, and fall detection. However, many data-driven methods encounter challenges related to domain shift, where the model fails to perform well in environments different from the training data. One major factor contributing to this issue is the limited availability of Wi-Fi sensing datasets, which makes models learn excessive irrelevant information and over-fit to the training set. Unfortunately, collecting large-scale Wi-Fi sensing datasets across diverse scenarios is a challenging task. To address this problem, we propose CrossFi, a siamese network-based approach that excels in both in-domain scenario and cross-domain scenario, including few-shot, zero-shot scenarios, and even works in few-shot new-class scenario where testing set contains new categories. The core component of CrossFi is a sample-similarity calculation network called CSi-Net, which improves the structure of the siamese network by using an attention mechanism to capture similarity information, instead of simply calculating the distance or cosine similarity. Based on it, we develop an extra Weight-Net that can generate a template for each class, so that our CrossFi can work in different scenarios. Experimental results demonstrate that our CrossFi achieves state-of-the-art performance across various scenarios. In gesture recognition task, our CrossFi achieves an accuracy of 98.17% in in-domain scenario, 91.72% in one-shot cross-domain scenario, 64.81% in zero-shot cross-domain scenario, and 84.75% in one-shot new-class scenario. To facilitate future research, we will release the code for our model upon publication.
Abstract:As an important part of Music Information Retrieval (MIR), Symbolic Music Understanding (SMU) has gained substantial attention, as it can assist musicians and amateurs in learning and creating music. Recently, pre-trained language models have been widely adopted in SMU because the symbolic music shares a huge similarity with natural language, and the pre-trained manner also helps make full use of limited music data. However, the issue of bias, such as sexism, ageism, and racism, has been observed in pre-trained language models, which is attributed to the imbalanced distribution of training data. It also has a significant influence on the performance of downstream tasks, which also happens in SMU. To address this challenge, we propose Adversarial-MidiBERT, a symbolic music understanding model based on Bidirectional Encoder Representations from Transformers (BERT). We introduce an unbiased pre-training method based on adversarial learning to minimize the participation of tokens that lead to biases during training. Furthermore, we propose a mask fine-tuning method to narrow the data gap between pre-training and fine-tuning, which can help the model converge faster and perform better. We evaluate our method on four music understanding tasks, and our approach demonstrates excellent performance in all of them. The code for our model is publicly available at https://github.com/RS2002/Adversarial-MidiBERT.
Abstract:Learning musical structures and composition patterns is necessary for both music generation and understanding, but current methods do not make uniform use of learned features to generate and comprehend music simultaneously. In this paper, we propose PianoBART, a pre-trained model that uses BART for both symbolic piano music generation and understanding. We devise a multi-level object selection strategy for different pre-training tasks of PianoBART, which can prevent information leakage or loss and enhance learning ability. The musical semantics captured in pre-training are fine-tuned for music generation and understanding tasks. Experiments demonstrate that PianoBART efficiently learns musical patterns and achieves outstanding performance in generating high-quality coherent pieces and comprehending music. Our code and supplementary material are available at https://github.com/RS2002/PianoBart.
Abstract:The introduction of fifth-generation (5G) radio technology has revolutionized communications, bringing unprecedented automation, capacity, connectivity, and ultra-fast, reliable communications. However, this technological leap comes with a substantial increase in energy consumption, presenting a significant challenge. To improve the energy efficiency of 5G networks, it is imperative to develop sophisticated models that accurately reflect the influence of base station (BS) attributes and operational conditions on energy usage.Importantly, addressing the complexity and interdependencies of these diverse features is particularly challenging, both in terms of data processing and model architecture design. This paper proposes a novel 5G base stations energy consumption modelling method by learning from a real-world dataset used in the ITU 5G Base Station Energy Consumption Modelling Challenge in which our model ranked second. Unlike existing methods that omit the Base Station Identifier (BSID) information and thus fail to capture the unique energy fingerprint in different base stations, we incorporate the BSID into the input features and encoding it with an embedding layer for precise representation. Additionally, we introduce a novel masked training method alongside an attention mechanism to further boost the model's generalization capabilities and accuracy. After evaluation, our method demonstrates significant improvements over existing models, reducing Mean Absolute Percentage Error (MAPE) from 12.75% to 4.98%, leading to a performance gain of more than 60%.