Abstract:We report ACE++, an instruction-based diffusion framework that tackles various image generation and editing tasks. Inspired by the input format for the inpainting task proposed by FLUX.1-Fill-dev, we improve the Long-context Condition Unit (LCU) introduced in ACE and extend this input paradigm to any editing and generation tasks. To take full advantage of image generative priors, we develop a two-stage training scheme to minimize the efforts of finetuning powerful text-to-image diffusion models like FLUX.1-dev. In the first stage, we pre-train the model using task data with the 0-ref tasks from the text-to-image model. There are many models in the community based on the post-training of text-to-image foundational models that meet this training paradigm of the first stage. For example, FLUX.1-Fill-dev deals primarily with painting tasks and can be used as an initialization to accelerate the training process. In the second stage, we finetune the above model to support the general instructions using all tasks defined in ACE. To promote the widespread application of ACE++ in different scenarios, we provide a comprehensive set of models that cover both full finetuning and lightweight finetuning, while considering general applicability and applicability in vertical scenarios. The qualitative analysis showcases the superiority of ACE++ in terms of generating image quality and prompt following ability. Code and models will be available on the project page: https://ali-vilab. github.io/ACE_plus_page/.
Abstract:Given an original image, image editing aims to generate an image that align with the provided instruction. The challenges are to accept multimodal inputs as instructions and a scarcity of high-quality training data, including crucial triplets of source/target image pairs and multimodal (text and image) instructions. In this paper, we focus on image style editing and present StyleBooth, a method that proposes a comprehensive framework for image editing and a feasible strategy for building a high-quality style editing dataset. We integrate encoded textual instruction and image exemplar as a unified condition for diffusion model, enabling the editing of original image following multimodal instructions. Furthermore, by iterative style-destyle tuning and editing and usability filtering, the StyleBooth dataset provides content-consistent stylized/plain image pairs in various categories of styles. To show the flexibility of StyleBooth, we conduct experiments on diverse tasks, such as text-based style editing, exemplar-based style editing and compositional style editing. The results demonstrate that the quality and variety of training data significantly enhance the ability to preserve content and improve the overall quality of generated images in editing tasks. Project page can be found at https://ali-vilab.github.io/stylebooth-page/.
Abstract:Prior studies have made significant progress in image inpainting guided by either text or subject image. However, the research on editing with their combined guidance is still in the early stages. To tackle this challenge, we present LAR-Gen, a novel approach for image inpainting that enables seamless inpainting of masked scene images, incorporating both the textual prompts and specified subjects. Our approach adopts a coarse-to-fine manner to ensure subject identity preservation and local semantic coherence. The process involves (i) Locate: concatenating the noise with masked scene image to achieve precise regional editing, (ii) Assign: employing decoupled cross-attention mechanism to accommodate multi-modal guidance, and (iii) Refine: using a novel RefineNet to supplement subject details. Additionally, to address the issue of scarce training data, we introduce a novel data construction pipeline. This pipeline extracts substantial pairs of data consisting of local text prompts and corresponding visual instances from a vast image dataset, leveraging publicly available large models. Extensive experiments and varied application scenarios demonstrate the superiority of LAR-Gen in terms of both identity preservation and text semantic consistency. Project page can be found at \url{https://ali-vilab.github.io/largen-page/}.
Abstract:Image diffusion models have been utilized in various tasks, such as text-to-image generation and controllable image synthesis. Recent research has introduced tuning methods that make subtle adjustments to the original models, yielding promising results in specific adaptations of foundational generative diffusion models. Rather than modifying the main backbone of the diffusion model, we delve into the role of skip connection in U-Net and reveal that hierarchical features aggregating long-distance information across encoder and decoder make a significant impact on the content and quality of image generation. Based on the observation, we propose an efficient generative tuning framework, dubbed SCEdit, which integrates and edits Skip Connection using a lightweight tuning module named SC-Tuner. Furthermore, the proposed framework allows for straightforward extension to controllable image synthesis by injecting different conditions with Controllable SC-Tuner, simplifying and unifying the network design for multi-condition inputs. Our SCEdit substantially reduces training parameters, memory usage, and computational expense due to its lightweight tuners, with backward propagation only passing to the decoder blocks. Extensive experiments conducted on text-to-image generation and controllable image synthesis tasks demonstrate the superiority of our method in terms of efficiency and performance. Project page: \url{https://scedit.github.io/}
Abstract:In this work, we introduce a new acquisition function for sequential sampling to efficiently quantify rare-event statistics of an input-to-response (ItR) system with given input probability and expensive function evaluations. Our acquisition is a generalization of the likelihood-weighted (LW) acquisition that was initially designed for the same purpose and then extended to many other applications. The improvement in our acquisition comes from the generalized form with two additional parameters, by varying which one can target and address two weaknesses of the original LW acquisition: (1) that the input space associated with rare-event responses is not sufficiently stressed in sampling; (2) that the surrogate model (generated from samples) may have significant deviation from the true ItR function, especially for cases with complex ItR function and limited number of samples. In addition, we develop a critical procedure in Monte-Carlo discrete optimization of the acquisition function, which achieves orders of magnitude acceleration compared to existing approaches for such type of problems. The superior performance of our new acquisition to the original LW acquisition is demonstrated in a number of test cases, including some cases that were designed to show the effectiveness of the original LW acquisition. We finally apply our method to an engineering example to quantify the rare-event roll-motion statistics of a ship in a random sea.
Abstract:Video temporal grounding aims to pinpoint a video segment that matches the query description. Despite the recent advance in short-form videos (\textit{e.g.}, in minutes), temporal grounding in long videos (\textit{e.g.}, in hours) is still at its early stage. To address this challenge, a common practice is to employ a sliding window, yet can be inefficient and inflexible due to the limited number of frames within the window. In this work, we propose an end-to-end framework for fast temporal grounding, which is able to model an hours-long video with \textbf{one-time} network execution. Our pipeline is formulated in a coarse-to-fine manner, where we first extract context knowledge from non-overlapped video clips (\textit{i.e.}, anchors), and then supplement the anchors that highly response to the query with detailed content knowledge. Besides the remarkably high pipeline efficiency, another advantage of our approach is the capability of capturing long-range temporal correlation, thanks to modeling the entire video as a whole, and hence facilitates more accurate grounding. Experimental results suggest that, on the long-form video datasets MAD and Ego4d, our method significantly outperforms state-of-the-arts, and achieves \textbf{14.6$\times$} / \textbf{102.8$\times$} higher efficiency respectively. Project can be found at \url{https://github.com/afcedf/SOONet.git}.
Abstract:Existing audio analysis methods generally first transform the audio stream to spectrogram, and then feed it into CNN for further analysis. A standard CNN recognizes specific visual patterns over feature map, then pools for high-level representation, which overlooks the positional information of recognized patterns. However, unlike natural image, the semantic of an audio spectrogram is sensitive to positional change, as its vertical and horizontal axes indicate the frequency and temporal information of the audio, instead of naive rectangular coordinates. Thus, the insensitivity of CNN to positional change plays a negative role on audio spectrogram encoding. To address this issue, this paper proposes a new self-supervised learning mechanism, which enhances the audio representation by first generating adversarial samples (\textit{i.e.}, negative samples), then driving CNN to distinguish the embeddings of negative pairs in the latent space. Extensive experiments show that the proposed approach achieves best or competitive results on 9 downstream datasets compared with previous methods, which verifies its effectiveness on audio representation learning.
Abstract:Many recent studies leverage the pre-trained CLIP for text-video cross-modal retrieval by tuning the backbone with additional heavy modules, which not only brings huge computational burdens with much more parameters, but also leads to the knowledge forgetting from upstream models.In this work, we propose the VoP: Text-Video Co-operative Prompt Tuning for efficient tuning on the text-video retrieval task. The proposed VoP is an end-to-end framework with both video & text prompts introducing, which can be regarded as a powerful baseline with only 0.1% trainable parameters. Further, based on the spatio-temporal characteristics of videos, we develop three novel video prompt mechanisms to improve the performance with different scales of trainable parameters. The basic idea of the VoP enhancement is to model the frame position, frame context, and layer function with specific trainable prompts, respectively. Extensive experiments show that compared to full fine-tuning, the enhanced VoP achieves a 1.4% average R@1 gain across five text-video retrieval benchmarks with 6x less parameter overhead. The code will be available at https://github.com/bighuang624/VoP.
Abstract:Testing and evaluation are expensive but critical steps in the development and deployment of connected and automated vehicles (CAVs). In this paper, we develop an adaptive sampling framework to efficiently evaluate the accident rate of CAVs, particularly for scenario-based tests where the probability distribution of input parameters is known from the Naturalistic Driving Data. Our framework relies on a surrogate model to approximate the CAV performance and a novel acquisition function to maximize the benefit (information to accident rate) of the next sample formulated through an information-theoretic consideration. In addition to the standard application with only a single high-fidelity model of CAV performance, we also extend our approach to the bi-fidelity context where an additional low-fidelity model can be used at a lower computational cost to approximate the CAV performance. Accordingly for the second case, our approach is formulated such that it allows the choice of the next sample, in terms of both fidelity level (i.e., which model to use) and sampling location to maximize the benefit per cost. Our framework is tested in a widely-considered two-dimensional cut-in problem for CAVs, where Intelligent Driving Model (IDM) with different time resolutions are used to construct the high and low-fidelity models. We show that our single-fidelity method outperforms the existing approach for the same problem, and the bi-fidelity method can further save half of the computational cost to reach a similar accuracy in estimating the accident rate.
Abstract:Content-based video retrieval aims to find videos from a large video database that are similar to or even near-duplicate of a given query video. Video representation and similarity search algorithms are crucial to any video retrieval system. To derive effective video representation, most video retrieval systems require a large amount of manually annotated data for training, making it costly inefficient. In addition, most retrieval systems are based on frame-level features for video similarity searching, making it expensive both storage wise and search wise. We propose a novel video retrieval system, termed SVRTN, that effectively addresses the above shortcomings. It first applies self-supervised training to effectively learn video representation from unlabeled data to avoid the expensive cost of manual annotation. Then, it exploits transformer structure to aggregate frame-level features into clip-level to reduce both storage space and search complexity. It can learn the complementary and discriminative information from the interactions among clip frames, as well as acquire the frame permutation and missing invariant ability to support more flexible retrieval manners. Comprehensive experiments on two challenging video retrieval datasets, namely FIVR-200K and SVD, verify the effectiveness of our proposed SVRTN method, which achieves the best performance of video retrieval on accuracy and efficiency.