Abstract:Single-view 3D hair reconstruction is challenging, due to the wide range of shape variations among diverse hairstyles. Current state-of-the-art methods are specialized in recovering un-braided 3D hairs and often take braided styles as their failure cases, because of the inherent difficulty to define priors for complex hairstyles, whether rule-based or data-based. We propose a novel strategy to enable single-view 3D reconstruction for a variety of hair types via a unified pipeline. To achieve this, we first collect a large-scale synthetic multi-view hair dataset SynMvHair with diverse 3D hair in both braided and un-braided styles, and learn two diffusion priors specialized on hair. Then we optimize 3D Gaussian-based hair from the priors with two specially designed modules, i.e. view-wise and pixel-wise Gaussian refinement. Our experiments demonstrate that reconstructing braided and un-braided 3D hair from single-view images via a unified approach is possible and our method achieves the state-of-the-art performance in recovering complex hairstyles. It is worth to mention that our method shows good generalization ability to real images, although it learns hair priors from synthetic data.
Abstract:Eyebrows play a critical role in facial expression and appearance. Although the 3D digitization of faces is well explored, less attention has been drawn to 3D eyebrow modeling. In this work, we propose EMS, the first learning-based framework for single-view 3D eyebrow reconstruction. Following the methods of scalp hair reconstruction, we also represent the eyebrow as a set of fiber curves and convert the reconstruction to fibers growing problem. Three modules are then carefully designed: RootFinder firstly localizes the fiber root positions which indicates where to grow; OriPredictor predicts an orientation field in the 3D space to guide the growing of fibers; FiberEnder is designed to determine when to stop the growth of each fiber. Our OriPredictor is directly borrowing the method used in hair reconstruction. Considering the differences between hair and eyebrows, both RootFinder and FiberEnder are newly proposed. Specifically, to cope with the challenge that the root location is severely occluded, we formulate root localization as a density map estimation task. Given the predicted density map, a density-based clustering method is further used for finding the roots. For each fiber, the growth starts from the root point and moves step by step until the ending, where each step is defined as an oriented line with a constant length according to the predicted orientation field. To determine when to end, a pixel-aligned RNN architecture is designed to form a binary classifier, which outputs stop or not for each growing step. To support the training of all proposed networks, we build the first 3D synthetic eyebrow dataset that contains 400 high-quality eyebrow models manually created by artists. Extensive experiments have demonstrated the effectiveness of the proposed EMS pipeline on a variety of different eyebrow styles and lengths, ranging from short and sparse to long bushy eyebrows.
Abstract:In this work, we tackle the challenging problem of learning-based single-view 3D hair modeling. Due to the great difficulty of collecting paired real image and 3D hair data, using synthetic data to provide prior knowledge for real domain becomes a leading solution. This unfortunately introduces the challenge of domain gap. Due to the inherent difficulty of realistic hair rendering, existing methods typically use orientation maps instead of hair images as input to bridge the gap. We firmly think an intermediate representation is essential, but we argue that orientation map using the dominant filtering-based methods is sensitive to uncertain noise and far from a competent representation. Thus, we first raise this issue up and propose a novel intermediate representation, termed as HairStep, which consists of a strand map and a depth map. It is found that HairStep not only provides sufficient information for accurate 3D hair modeling, but also is feasible to be inferred from real images. Specifically, we collect a dataset of 1,250 portrait images with two types of annotations. A learning framework is further designed to transfer real images to the strand map and depth map. It is noted that, an extra bonus of our new dataset is the first quantitative metric for 3D hair modeling. Our experiments show that HairStep narrows the domain gap between synthetic and real and achieves state-of-the-art performance on single-view 3D hair reconstruction.
Abstract:We present a new framework to reconstruct holistic 3D indoor scenes including both room background and indoor objects from single-view images. Existing methods can only produce 3D shapes of indoor objects with limited geometry quality because of the heavy occlusion of indoor scenes. To solve this, we propose an instance-aligned implicit function (InstPIFu) for detailed object reconstruction. Combining with instance-aligned attention module, our method is empowered to decouple mixed local features toward the occluded instances. Additionally, unlike previous methods that simply represents the room background as a 3D bounding box, depth map or a set of planes, we recover the fine geometry of the background via implicit representation. Extensive experiments on the e SUN RGB-D, Pix3D, 3D-FUTURE, and 3D-FRONT datasets demonstrate that our method outperforms existing approaches in both background and foreground object reconstruction. Our code and model will be made publicly available.
Abstract:Semantic reconstruction of indoor scenes refers to both scene understanding and object reconstruction. Existing works either address one part of this problem or focus on independent objects. In this paper, we bridge the gap between understanding and reconstruction, and propose an end-to-end solution to jointly reconstruct room layout, object bounding boxes and meshes from a single image. Instead of separately resolving scene understanding and object reconstruction, our method builds upon a holistic scene context and proposes a coarse-to-fine hierarchy with three components: 1. room layout with camera pose; 2. 3D object bounding boxes; 3. object meshes. We argue that understanding the context of each component can assist the task of parsing the others, which enables joint understanding and reconstruction. The experiments on the SUN RGB-D and Pix3D datasets demonstrate that our method consistently outperforms existing methods in indoor layout estimation, 3D object detection and mesh reconstruction.