Abstract:Map-based localization is crucial for the autonomous movement of robots as it provides real-time positional feedback. However, existing VINS and SLAM systems cannot be directly integrated into the robot's control loop. Although VINS offers high-frequency position estimates, it suffers from drift in long-term operation. And the drift-free trajectory output by SLAM is post-processed with loop correction, which is non-causal. In practical control, it is impossible to update the current pose with future information. Furthermore, existing SLAM evaluation systems measure accuracy after aligning the entire trajectory, which overlooks the transformation error between the odometry start frame and the ground truth frame. To address these issues, we propose a multi-cam multi-map visual inertial localization system, which provides real-time, causal and drift-free position feedback to the robot control loop. Additionally, we analyze the error composition of map-based localization systems and propose a set of evaluation metric suitable for measuring causal localization performance. To validate our system, we design a multi-camera IMU hardware setup and collect a long-term challenging campus dataset. Experimental results demonstrate the higher real-time localization accuracy of the proposed system. To foster community development, both the system and the dataset have been made open source https://github.com/zoeylove/Multi-cam-Multi-map-VILO/tree/main.
Abstract:Monocular visual odometry (MVO) is vital in autonomous navigation and robotics, providing a cost-effective and flexible motion tracking solution, but the inherent scale ambiguity in monocular setups often leads to cumulative errors over time. In this paper, we present BEV-ODOM, a novel MVO framework leveraging the Bird's Eye View (BEV) Representation to address scale drift. Unlike existing approaches, BEV-ODOM integrates a depth-based perspective-view (PV) to BEV encoder, a correlation feature extraction neck, and a CNN-MLP-based decoder, enabling it to estimate motion across three degrees of freedom without the need for depth supervision or complex optimization techniques. Our framework reduces scale drift in long-term sequences and achieves accurate motion estimation across various datasets, including NCLT, Oxford, and KITTI. The results indicate that BEV-ODOM outperforms current MVO methods, demonstrating reduced scale drift and higher accuracy.
Abstract:As a novel 3D scene representation, semantic occupancy has gained much attention in autonomous driving. However, existing occupancy prediction methods mainly focus on designing better occupancy representations, such as tri-perspective view or neural radiance fields, while ignoring the advantages of using long-temporal information. In this paper, we propose a radar-camera multi-modal temporal enhanced occupancy prediction network, dubbed TEOcc. Our method is inspired by the success of utilizing temporal information in 3D object detection. Specifically, we introduce a temporal enhancement branch to learn temporal occupancy prediction. In this branch, we randomly discard the t-k input frame of the multi-view camera and predict its 3D occupancy by long-term and short-term temporal decoders separately with the information from other adjacent frames and multi-modal inputs. Besides, to reduce computational costs and incorporate multi-modal inputs, we specially designed 3D convolutional layers for long-term and short-term temporal decoders. Furthermore, since the lightweight occupancy prediction head is a dense classification head, we propose to use a shared occupancy prediction head for the temporal enhancement and main branches. It is worth noting that the temporal enhancement branch is only performed during training and is discarded during inference. Experiment results demonstrate that TEOcc achieves state-of-the-art occupancy prediction on nuScenes benchmarks. In addition, the proposed temporal enhancement branch is a plug-and-play module that can be easily integrated into existing occupancy prediction methods to improve the performance of occupancy prediction. The code and models will be released at https://github.com/VDIGPKU/TEOcc.
Abstract:In this paper, we present our solution for the {\it IJCAI--PRICAI--20 3D AI Challenge: 3D Object Reconstruction from A Single Image}. We develop a variant of AtlasNet that consumes single 2D images and generates 3D point clouds through 2D to 3D mapping. To push the performance to the limit and present guidance on crucial implementation choices, we conduct extensive experiments to analyze the influence of decoder design and different settings on the normalization, projection, and sampling methods. Our method achieves 2nd place in the final track with a score of $70.88$, a chamfer distance of $36.87$, and a mean f-score of $59.18$. The source code of our method will be available at https://github.com/em-data/Enhanced_AtlasNet_3DReconstruction.