Abstract:This paper reviews the NTIRE 2024 low light image enhancement challenge, highlighting the proposed solutions and results. The aim of this challenge is to discover an effective network design or solution capable of generating brighter, clearer, and visually appealing results when dealing with a variety of conditions, including ultra-high resolution (4K and beyond), non-uniform illumination, backlighting, extreme darkness, and night scenes. A notable total of 428 participants registered for the challenge, with 22 teams ultimately making valid submissions. This paper meticulously evaluates the state-of-the-art advancements in enhancing low-light images, reflecting the significant progress and creativity in this field.
Abstract:Humans use all of their senses to accomplish different tasks in everyday activities. In contrast, existing work on robotic manipulation mostly relies on one, or occasionally two modalities, such as vision and touch. In this work, we systematically study how visual, auditory, and tactile perception can jointly help robots to solve complex manipulation tasks. We build a robot system that can see with a camera, hear with a contact microphone, and feel with a vision-based tactile sensor, with all three sensory modalities fused with a self-attention model. Results on two challenging tasks, dense packing and pouring, demonstrate the necessity and power of multisensory perception for robotic manipulation: vision displays the global status of the robot but can often suffer from occlusion, audio provides immediate feedback of key moments that are even invisible, and touch offers precise local geometry for decision making. Leveraging all three modalities, our robotic system significantly outperforms prior methods.
Abstract:Using computational notebooks (e.g., Jupyter Notebook), data scientists rationalize their exploratory data analysis (EDA) based on their prior experience and external knowledge such as online examples. For novices or data scientists who lack specific knowledge about the dataset or problem to investigate, effectively obtaining and understanding the external information is critical to carry out EDA. This paper presents EDAssistant, a JupyterLab extension that supports EDA with in-situ search of example notebooks and recommendation of useful APIs, powered by novel interactive visualization of search results. The code search and recommendation are enabled by state-of-the-art machine learning models, trained on a large corpus of EDA notebooks collected online. A user study is conducted to investigate both EDAssistant and data scientists' current practice (i.e., using external search engines). The results demonstrate the effectiveness and usefulness of EDAssistant, and participants appreciated its smooth and in-context support of EDA. We also report several design implications regarding code recommendation tools.