Abstract:Using computational notebooks (e.g., Jupyter Notebook), data scientists rationalize their exploratory data analysis (EDA) based on their prior experience and external knowledge such as online examples. For novices or data scientists who lack specific knowledge about the dataset or problem to investigate, effectively obtaining and understanding the external information is critical to carry out EDA. This paper presents EDAssistant, a JupyterLab extension that supports EDA with in-situ search of example notebooks and recommendation of useful APIs, powered by novel interactive visualization of search results. The code search and recommendation are enabled by state-of-the-art machine learning models, trained on a large corpus of EDA notebooks collected online. A user study is conducted to investigate both EDAssistant and data scientists' current practice (i.e., using external search engines). The results demonstrate the effectiveness and usefulness of EDAssistant, and participants appreciated its smooth and in-context support of EDA. We also report several design implications regarding code recommendation tools.
Abstract:Model compression can significantly reduce sizes of deep neural network (DNN) models so that large, sophisticated models after compression can be deployed on resource-limited mobile and IoT devices. However, model compression often introduces deviated behaviors into a compressed model: the original and compressed models output different prediction results for the same input. Hence, it is critical to warn developers and help them comprehensively evaluate possible consequences of such behaviors before deployment. To this end, we propose TriggerFinder, a novel, effective and efficient testing approach to automatically identifying inputs to trigger deviated behaviors in compressed models. Given an input i as a seed, TriggerFinder iteratively applies a series of mutation operations to change i until the resulting input triggers a deviated behavior. However, compressed models usually hide their architecture and gradient information; without such internal information as guidance, it becomes difficult to effectively and efficiently trigger deviated behaviors. To tackle this challenge, we propose a novel fitness function to determine the mutated input that is closer to the inputs that can trigger the deviated predictions. Furthermore, TriggerFinder models this search problem as a Markov Chain process and leverages the Metropolis-Hasting algorithm to guide the selection of mutation operators. We evaluated TriggerFinder on 18 compressed models with two datasets. The experiment results demonstrate that TriggerFinder can successfully find triggering inputs for all seed inputs while the baseline fails in certain cases. As for efficiency, TriggerFinder is 5.2x-115.8x as fast as the baselines. Furthermore, the queries required by TriggerFinder to find one triggering input is only 51.8x-535.6x as small as the baseline.